1、243 正多边形和圆(共2课时)第一课时:正多边形和圆教学目标1、了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算难点:探索正多边形与圆的关系教学过程一、问题与情境,引入新课观看下列美丽的图案问题1这些美丽的图案,都是在日常生活中我们经常能看到的、利用正多边形得到的物体你能从这些图案中找出正多边形来吗? 问题2你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗?引入新课。二、探究新知探究一:将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论关注(1)学生
2、能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;(2)学生能否观察发现圆内接五边形的各内角都是圆周角;(3)学生能否发现每一个圆周角所对弧都是三等份的弧;(4)学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形探究二如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形探究三各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是,举出反例活动3学生观看课件,理解
3、概念例题1 有一个亭子(如图)它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2) 解:如图所示,由于ABCDEF是正六边形,所以它的中心角等于=60,OBC是等边三角形,从而正六边形的边长等于它的半径 因此,所求的正六边形的周长为6a 在RtOAM中,OA=a,AM=AB=a 利用勾股定理,可得边心距 OM=a 所求正六边形的面积=6ABOM=6aa=a2三、 课堂练习 完成教材第105练习页习题243第1题四、课堂小结 1正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距2正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的
4、等量关系五、布置作业 1教科书第107页习题243第3、5、6题2思考题1、正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?2、正n边形的半径,边心距,边长又有什么关系?第二课时: 正多边形和圆教学内容 1、在经历探索正多边形与圆的关系过程中,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题2在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系3正多边形的画法重点:并能运用正多边形的知识解决圆的有关计算问题难点:通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系 教学过程一、 复习回顾:1、 一个正多边形的外接
5、圆的圆心叫做这个多边形的中心 2、外接圆的半径叫做正多边形的半径 3、正多边形每一边所对的圆心角叫做正多边形的中心角 4、中心到正多边形的一边的距离叫做正多边形的边心距 二、探究新知:现在我们利用正多边形的概念和性质来画正多边形 例2利用你手中的工具画一个边长为3cm的正五边形 分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径解:正五边形的中心角AOB=72,如图,AOC=30,OA=ABsin36=1.5sin362.55(cm) 画法(1)以O为圆心,OA=2.55cm为半径画圆; (2)在O上顺次截取边长为3cm的AB、BC、CD、DE、EA (
6、3)分别连结AB、BC、CD、DE、EA 则正五边形ABCDE就是所要画的正五边形,如图所示三、巩固练习 教材P107 练习四、应用拓展 例3在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6 (1)求ABC的边AB上的高h (2)设DN=x,且,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点185的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方
7、案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树 分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值(3)的设计要有新意,应用圆的对称性就能圆满解决此题 解:(1)由ABCG=ACBC得h=4.8 (2)h=且DN=x NF= 则S四边形DEFN=x(4.8-x)=-x2+10x =-(x2-x)=- (x-)2-=-(x-2.4)2+12 -(x-2.4)20 -(x-2.4)2+1212 且当x=2.4时,取等号 当x=2.4时,SDEFN最大 (3)当SDEFN最大时,x=2.4,此时,F为BC中点,在RtFEB中,EF=
8、2.4,BF=3 BE=1.8 BM=1.85,BMEB,即大树必位于欲修建的水池边上,应重新设计方案 当x=2.4时,DE=5AD=3.2,由圆的对称性知满足条件的另一设计方案,如图所示:此时,AC=6,BC=8,AD=1.8,BE=3.2,这样设计既满足条件,又避开大树 五、归纳小结(学生小结,老师点评) 1画正多边形的方法2运用以上的知识解决实际问题六、布置作业 一、选择题 1如图1所示,正六边形ABCDEF内接于O,则ADB的度数是( )A60 B45 C30 D225 (1) (2) (3) 2圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则APB的度数是( ) A36 B
9、60 C72 D108 3若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为( ) A18 B36 C72 D144 二、填空题 1已知正六边形边长为a,则它的内切圆面积为_ 2在ABC中,ACB=90,B=15,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为_ 3四边形ABCD为O的内接梯形,如图3所示,ABCD,且CD为直径,如果O的半径等于r,C=60,那图中OAB的边长AB是_;ODA的周长是_;BOC的度数是_ 三、综合提高题1等边ABC的边长为a,求其内切圆的内接正方形DEFG的面积2如图所示,已知O的周长等于6cm,求以它的半径为边长的正六边形ABCDEF的面积3如图所示,正五边形ABCDE的对角线AC、BE相交于M (1)求证:四边形CDEM是菱形; (2)设MF2=BEBM,若AB=4,求BE的长