1、(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1等差数列an中,已知a1,a2a54,an33,则n为()A48B49C50 D51解析:a2a52a15d4,则由a1得d,令an33(n1),可解得n50,故选C.答案:C2若an是等差数列,则下列数列中仍为等差数列的个数有()an3aan1an2an2annA1个 B2个C3个 D4个解析:an为等差数列,则由其定义可知,仍然是等差数列,故选D.答案:D3已知等差数列an的公差为d(d0),且a3a6a10a1332,若am8,则m为()A12 B8C6 D4解析:由等差中项性质可得a3a6a10a13324a8,故a88,则m
2、8.答案:B4数列a,b,m,n和x,n,y,m均成等差数列,则2by2ax的值为()A正实数 B负实数C零 D不确定解析:由题意banm,yxmn,by(ax)(ba)(yx)nmmn0,byax.2by2ax.2by2ax0.答案:C5已知等差数列an、bn的公差分别为2和3,且bnN*,则数列abn是()A等差数列且公差为5 B等差数列且公差为6C等差数列且公差为8 D等差数列且公差为9解析:依题意有abna1(bn1)22bna122b12(n1)3a126na12b18,故abn1abn6,即数列abn是等差数列且公差为6.故选B.答案:B6已知数列an为等差数列,若1,且它们的前n
3、项和Sn有最大值,则使Sn0的n的最大值为()A11 B19C20 D21解析:1,且Sn有最大值,a100,a110,且a10a110,S1919a100,S2010(a10a11)0,所以使得Sn0的n的最大值为19,故选B.答案:B二、填空题7(2010辽宁卷)设Sn为等差数列an的前n项和,若S33,S624,则a9_.解析:设等差数列公差为d,则S33a1d3a13d3,即a1d1,S66a1d6a115d24,即2a15d8.联立两式得a11,d2,故a9a18d18215.答案:158在数列an中,若点(n,an)在经过点(5,3)的定直线l上,则数列an的前9项和S9_.解析:
4、点(n,an)在定直线l上,数列an为等差数列ana1(n1)d.将(5,3)代入,得3a14da5.S9(a1a9)9a53927.答案:279等差数列an的前n项和为Sn,且a4a28,a3a526.记Tn,如果存在正整数M,使得对一切正整数n,TnM都成立,则M的最小值是_解析:an为等差数列,由a4a28,a3a526,可解得Sn2n2n,Tn2,若TnM对一切正整数n恒成立,则只需Tn的最大值M即可又Tn22,只需2M,故M的最小值是2.答案:2三、解答题10(2009全国卷)已知等差数列an中,a3a716,a4a60,求an的前n项和Sn.解析:设an的公差为d,则即解得或因此S
5、n8nn(n1)n(n9)或Sn8nn(n1)n(n9)11已知数列an满足2an1anan2(nN*),它的前n项和为Sn,且a310,S672.若bnan30,求数列bn的前n项和的最小值.【解析方法代码108001062】解析:2an1anan2,an是等差数列,设an的首项为a1,公差为d,由a310,S672,得,an4n2.则bnan302n31.解得n.nN*,n15.bn的前15项为负值,S15最小,由可知bn是以b129为首项,d2为公差的等差数列,S15225.12已知数列an的前n项和为Sn,a11,nSn1(n1)Snn2cn(cR,n1,2,3,),且S1,成等差数列(1)求c的值;(2)求数列an的通项公式.【解析方法代码108001063】解析:(1)nSn1(n1)Snn2cn(n1,2,3,),(n1,2,3,)S1,成等差数列,.c1.(2)由(1)得1(n1,2,3,),数列为首项是,公差为1的等差数列(n1)1n.Snn2.当n2时,anSnSn1n2(n1)22n1.当n1时,上式也成立an2n1(n1,2,3,)