1、图形的相似学习目标1.能运用相似三角形的知识解决一些实际问题.2.会用直角坐标系来描述物体的位置,用坐标的方法研究图形的运动变换,体会数与形间的关系.学习重点和难点重点:用相似三角形的知识解决一些实际问题.难点:将实际问题或数学问题转化为相似三角形的问题.学习过程:自主尝试相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤:将实际问题转化为 的问题;找出一对相似三角形;根据相似三角形的性质,表示出相应的量;并求解(2)运用相似三角形的有关性质解决现实生活中的实际问题如利用光的反射定律求物体的高度,利用影子计算建筑物的高度同一时刻,物高与影长成正比例,有.二、互动探究
2、 问题1:如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCDAPQB变式1:王华在晚上由路灯A走向路灯B,当他走到点 P时,发现身后他影子的顶部刚好接触到路灯A的底部, 当他向前再行12m到达点Q时,发现身前他影子的顶部刚好接触到路灯B的底部。已知王华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB= x m。(1)求两个路灯之间的距离;(2)当王华走到路灯B时,他在路灯A下的影长是多少?变式2:一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,
3、接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB1.25 m已知李明直立时的身高为1.75 m,求路灯的高CD的长(结果精确到0.1 m)变式3:(2015镇江)某兴趣小组开展课外活动如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上)(1)请在图中画出光源O点的位置,并画出
4、他位于点F时在这个灯光下的影长FM(不写画法);(1)求小明原来的速度反馈检测(10分钟)基础达标:1.天,小青在校园内发现:旁边一棵树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点处(如图所示)如果小青的身高为1.65米,由此可推断出树高为_米2兴趣小组的同学要测量树的高度在阳光下,一名同学测得一根长为l米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得该影子的长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为 (
5、 ) A11.5米 B11.75米 C11.8米 D12.25米3.如图,工地上竖立着两根电线杆AB、CD,它们相距15 m,分别自两杆上高出地面4m、6m的A、C处,向两侧地面上的E和D、B和F处用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD与BC的交点P离地面的高度PH是多少米? 2如图,学校围墙外的服装厂有一根旗杆AB,甲在操场上竖立3m高的竹竿CD,乙从C处退到E处恰好看到竹竿顶端D与旗杆顶端B重合,量得CE3 m,乙的眼睛到地面的距离FE1.5 m,丙在C1处竖立3m高的竹竿C1 D1,乙从E处后退6m到E1处,恰好看到竹竿顶端D1与旗杆顶端B也重合,量得C1E14m,求旗杆AB的高度挑
6、战自我:(2014自贡)阅读理解:如图,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”解决问题:(1)如图,ABDEC45,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图中画出矩形ABCD的边AB上的强相似点;(3)如图,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系四、课堂反思: