收藏 分享(赏)

江苏专用2016高考数学二轮专题复习解答题强化练第四周函数与导数问题理.doc

上传人:a**** 文档编号:276681 上传时间:2025-11-22 格式:DOC 页数:2 大小:17KB
下载 相关 举报
江苏专用2016高考数学二轮专题复习解答题强化练第四周函数与导数问题理.doc_第1页
第1页 / 共2页
江苏专用2016高考数学二轮专题复习解答题强化练第四周函数与导数问题理.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、星期五(函数与导数问题)2016年_月_日已知函数f(x)exmx2,g(x)mxln x.(1)求函数f(x)的单调区间;(2)当m1时,试推断方程|g(x)|是否有实数解;(3)证明:在区间(0,)上,函数yf(x)的图象恒在函数yg(x)的图象的上方(1)解由题意可得:f(x)exm.当m0,f(x)0,所以当m0时,函数f(x)的单调增区间为(,)当m0时,令f(x)0,即exm0,可得xln(m);令f(x)0,即exm0,可得xln(m)所以当m0时,函数f(x)的单调增区间为ln(m),),单调减区间为(,ln(m)(2)解当m1时,g(x)xln x(x0),易得g(x)1.令

2、g(x)0,可得0x1,令g(x)0,可得x1.故g(x)在x1得取得极大值,亦即最大值即g(x)g(1)1,|g(x)|1.令h(x),所以h(x).令h(x)0,可得0xe,令h(x)0,可得xe,故h(x)在xe取得极大值,亦即最大值,h(x)h(e)1.所以方程|g(x)|无实数解(3)证明由题意可知本题即证:当x(0,)时,f(x)g(x)恒成立令F(x)f(x)g(x)exln x2(x0),则F(x)ex.令H(x)xex1,则H(x)exxexex(x1)又x(0,),H(x)0,函数H(x)在(0,)上单调递增H(0)1.又H(1)e10,设x0为函数H(x)的零点,则x0(0,1),即H(x0)x0ex010,即x0ex01,x0ex0,ex0,当x(0,x0)时,H(x)0,即x(0,x0)时,函数F(x)单调递减,当x(x0,)时,H(x)0,即x(x0,)时,函数F(x)单调递增x0为函数F(x)的极小值点,亦即最小值点,F(x)F(x0)ex0ln x02x02220,F(x)0,即x(0,)时,f(x)g(x),原题得证

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1