1、提能专训(十)等差与等比数列一、选择题1(2014甘肃武威凉州第一次诊断)等比数列an的前n项和为Sn,S52,S106,则a16a17a18a19a20()A54B48C32D16答案:D解析:解法一:由等比数列的性质知,S5,S10S5,S15S10,S20S15仍成等比数列,2,4,8,16.解法二:S5,S10,1q53,q52.a16a17a18a19a20q15(a1a2a3a4a5)23S58216.2.(2014广西四市联考)已知等比数列an的前n项和Sn,若a2a32a1,且a4与2a7的等差中项为,则S5()A35 B33 C31 D29答案:C解析:由得q3,q.a116
2、.S53231.3(2014河南南阳三次联考)等差数列an中,如果a1a4a739,a3a6a927,则数列an前9项的和为()A297 B144 C99 D66答案:C解析:由得a4a622.S99999.4(2014河南郑州质检)已知各项不为0的等差数列an满足a42a3a80,数列bn是等比数列,且b7a7,则b2b12等于()A1 B2 C4 D8答案:C解析:a42a3a80,2aa43a8a73d3(a7d)4a7,a72,b72.b2b12b4.5(2014陕西质检三)已知a,b,c是三个不同的实数若a,b,c成等差数列,且b,a,c成等比数列,则abc()A214 B214 C
3、124 D124答案:B解析:本题主要考查等差、等比数列,考查等差中项和等比中项依题意有检验各选项,可知B正确6已知等差数列an中,a3a7a100,a11a44,记Sna1a2an,则S13()A78 B68 C56 D52答案:D解析:S1313a1d52.7已知等比数列an中,a1a2a3a4a532,且a118,则a7的值为()A4 B4 C4 D2答案:A解析:由等比数列的性质,得a1a2a3a4a5a32,故a32,又a118,aa3a11,解得a74(负值舍去,因为a3,a5,a7同号)8(2014山西四校联考)已知等差数列an的前n项和为Sn,若S80且S90,0,a50,d2
4、,an2n1.(2)bnanbn1(n2,nN*),bnbn12n1(n2,nN*)bn(bnbn1)(bn1bn2)(b2b1)b1(n2,nN*),且b1a11,bn2n12n331n2(n2,nN*)bnn2(nN*)18(2014西安八校联考)在各项均为正数的等差数列an中,对任意的nN*都有a1a2ananan1.(1)求数列an的通项an;(2)设数列bn满足b11,bn1bn2an,求证:对任意的nN*都有bnbn20,得a22.令n2,得a1a2a2a3,即a12a12d,得d1.从而a1a2d1.故an1(n1)1n.(2)因为ann,所以bn1bn2n,所以bn(bnbn1
5、)(bn1bn2)(b2b1)b12n12n2212n1.又bnbn2b(2n1)(2n21)(2n11)22n0,所以bnbn2b.19(2014武汉武昌调研)在公差不为零的等差数列an中,已知a11,且a1,a2,a5依次成等比数列数列bn满足bn12bn1,且b13.(1)求an,bn的通项公式;(2)设数列的前n项和为Sn,试比较Sn与1的大小解:(1)因为a11,且a1,a2,a5依次成等比数列,所以aa1a5,即(1d)21(14d),所以d22d0,解得d2(d0不合要求,舍去),所以an12(n1)2n1.因为bn12bn1,所以bn112(bn1),所以bn1是首项为b112,公比为2的等比数列所以bn122n12n.所以bn2n1.(2)因为,所以Sn1,于是Sn11.所以,当n1,2时,2n2n,Sn1;当n3时,2n2n,Sn1.