1、易错点22 数列求和方法一、单选题1. 数列an满足:a1=1,且对任意的nN*都有:an+1=an+n+1,则1a1+1a2+1a3+1a2016=A. 40302016B. 20151008C. 20162017D. 403220172. 已知Sn=12+1+13+2+12+3+1n+1+n,若Sm=9,则m=A. 11B. 99C. 120D. 1213. 13+13+6+13+6+9+13+6+9+30=A. 310B. 1033C. 35D. 20334. 已知数列an满足:an=1n(n+2),则an的前10项和S10为A. 175264B. 1124C. 175132D. 111
2、25. 数列an的通项,其前n项和为Sn,则S30为A. 470B. 490C. 495D. 5106. 数列112,314,518,7116,(2n-1)+12n,的前n项和Sn的值等于A. n2+1-12nB. 2n2-n+1-12nC. n2+1-12n-1D. n2-n+1-12n7. 已知函数f(x)=lnexe-x,若fe2021+f2e2021+f2020e2021=1010(a+b),则a2+b2的最小值为A. 1B. 2C. 3D. 48. 已知数列an满足,设数列bn满足:bn=2n+1anan+1,数列bn的前n项和为Tn,若恒成立,则实数的取值范围为A. 14,+B.
3、14,+C. 38,+D. 38,+二、填空题9. 已知数列1.11+2,11+2+311+2+3+n,则其前n项的和等于_10. 已知数列an满足an=1+2+3+nn,则数列1anan+1的前n项和为_11. 已知数列an与bn前n项和分别为Sn,Tn,且an0,2Sn=an2+an,nN*,bn=2n+1(2n+an)(2n+1+an+1),对任意的nN*,kTn恒成立,则k的取值范围是_12. 已知函数f(x)=ax2-1的图象在点A(1,f(1)处的切线与直线x+8y=0垂直,若数列1f(n)的前n项和为Sn,则Sn=_三、解答题13. 已知an是各项均为正数的等比数列,且a1+a2
4、=6,a1a2=a3()求数列an的通项公式;()bn为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列bnan的前n项和Tn14. 在公差为d的等差数列an中,a12+a22=a1+a2(1)求d的取值范围;(2)已知d=-1,试问:是否存在等差数列bn,使得数列1an2+bn的前n项和为nn+1?若存在,求bn的通项公式;若不存在,请说明理由15. 已知正项等比数列an的前n项和为Sn,a1=2,2S2=a2+a3(1)求数列an的通项公式;(2)设bn=2n-1an+2log2an,求数列bn的前n项和已知an是公差不为零的等差数列,满足a3=7,且a2、a4、
5、a9成等比数列(1)求数列an的通项公式;(2)设数列bn满足bn=anan+1,求数列1bn的前n项和Sn一、单选题1数列an满足:a1=1,且对任意的nN*都有:an+1=an+n+1,则1a1+1a2+1a3+1a2016=A. 40302016B. 20151008C. 20162017D. 40322017【答案】D【解析】解:an+1=an+n+1,an+1-an=n+1,即a2-a1=2,a3-a2=3,an-an-1=n,等式两边同时相加得an-a1=2+3+4+n,即an=a1+2+3+4+n=1+2+3+4+n=n(n+1)2,则1an=2n(n+1)=2(1n-1n+1)
6、,1a1+1a2+1a3+1a2016=2(1-12+12-13+12016-12017)=2(1-12017)=220162017=40322017,故选D2已知Sn=12+1+13+2+12+3+1n+1+n,若Sm=9,则m=A. 11B. 99C. 120D. 121【答案】B【解析】解:1n+1+n=n+1-n,Sn=12+1+13+2+12+3+1n+1+n=2-1+3-2+2-3+n+1-n=n+1-1,Sm=m+1-1=9,解得:m=99,故选B3、13+13+6+13+6+9+13+6+9+30=A. 310B. 1033C. 35D. 2033【答案】D【解析】解:13+1
7、3+6+13+6+9+13+6+9+30=13(1+11+2+11+2+3+11+2+3+10)=23(112+123+134+11011)=23(1-12+12-13+13-14+110-111)=23(1-111)=231011=2033,故选D4、已知数列an满足:an=1n(n+2),则an的前10项和S10为A. 175264B. 1124C. 175132D. 1112【答案】A【解析】解:数列an满足:an=1n(n+2),可得an=12(1n-1n+2),即S10=12(1-13+12-14+19-111+110-112)=12(1+12-111-112)=175264故选:A
8、5、数列an的通项,其前n项和为Sn,则S30为A. 470B. 490C. 495D. 510【答案】A【解析】解:由,可得a1=-12,a2=-1222,a3=32,a4=-1242,,所以S30=-1212+22-232+(42+52-262)+282+292-2302当n=3k(k=1,2,3,10)时,n-22+n-12-2n2=5-6nn=3,6,9,30,即式方括号内的每一组项构成一个以-13为首项,以-18为公差的等差数列,共10项,S30=-12-1310+1092-18=470故选A6、数列112,314,518,7116,(2n-1)+12n,的前n项和Sn的值等于A.
9、n2+1-12nB. 2n2-n+1-12nC. n2+1-12n-1D. n2-n+1-12n【答案】A【解析】解:该数列的通项公式为an=2n-1+12n,Sn=1+3+5+2n-1+12+122+123+12n=n1+2n-12+121-12n1-12=n2+1-12n故选A7、已知函数f(x)=lnexe-x,若fe2021+f2e2021+f2020e2021=1010(a+b),则a2+b2的最小值为A. 1B. 2C. 3D. 4【答案】B【解析】解:f(x)=lnexe-x,则f(x)+f(e-x)=lnexe-x+lne(e-x)e-e-x=lne=2,设S=fe2021+f
10、2e2021+f2020e2021,则S=f2020e2021+f2019e2021+fe2021,故2S=22020,S=2020,1010(a+b)=2020,a+b=2a2+b2(a+b)22=2,当且仅当a=b=1时取等号故选B8、已知数列an满足,设数列bn满足:bn=2n+1anan+1,数列bn的前n项和为Tn,若恒成立,则实数的取值范围为A. 14,+B. 14,+C. 38,+D. 38,+【答案】D【解析】解:数列an满足a1+12a2+13a3+1nan=n2+n,n=1时,a1=2,当n2时,a1+12a2+13a3+1n-1an-1=(n-1)2+(n-1),-得:1
11、nan=2n,即an=2n2,n2,a1=2也满足上式,故:an=2n2,数列bn满足:bn=2n+1anan+1=2n+14n2(n+1)2=141n2-1(n+1)2,则:Tn=141-(12)2+(12)2-(13)2+1n2-1(n+1)2,=14(1-1(n+1)2),由于Tnnn+1(nN*)恒成立,故:14(1-1(n+1)2)n+24n+4(nN*)恒成立,因为y=n+24n+4=14(1+1n+1)在nN*上单调递减,当n=1时,(n+24n+4)max=38故38,故选:D二、填空题 9、已知数列1.11+2,11+2+311+2+3+n,则其前n项的和等于_【答案】2nn
12、+1【解析】解:由题意可得数列的通项an=11+2+3+n=2n(n+1)=2(1n-1n+1)Sn=1+11+2+11+2+n=2(1-12+12-13+1n-1n+1)=2(1-1n+1)=2nn+1故答案为2nn+1 10、已知数列an满足an=1+2+3+nn,则数列1anan+1的前n项和为_【答案】2nn+2【解析】解:an=1+2+3+nn=n+12,则1anan+1=4(n+1)(n+2)=41n+1-1n+2,所求数列的前n项和为412-13+13-14+1n+1-1n+2=412-1n+2=2nn+2故答案为2nn+2 11、已知数列an与bn前n项和分别为Sn,Tn,且a
13、n0,2Sn=an2+an,nN*,bn=2n+1(2n+an)(2n+1+an+1),对任意的nN*,kTn恒成立,则k的取值范围是_【答案】13,+)【解析】解:依题意得当n=1时,2a1=a12+a1,由于an20,解得a1=1;当n2时,2Sn-1=an-12+an-1,因此有:2an=an2-an-12+an-an-1;整理得:an-an-1=1,所以数列an是以a1=1为首项,公差d=1的等差数列,因此an=n,则bn=2n+1(2n+an)(2n+1+an+1)=2n+12n+n2n+1+n+1=12n+n-12n+1+n+1所以Tn=13-17+17-112+.+12n+n-1
14、2n+1+n+1=13-12n+1+n+113故k13故答案为13,+) 12、已知函数f(x)=ax2-1的图象在点A(1,f(1)处的切线与直线x+8y=0垂直,若数列1f(n)的前n项和为Sn,则Sn=_【答案】n2n+1【解析】解:函数f(x)=ax2-1的导数为f(x)=2ax,可得f(x)在x=1处的切线斜率为2a,切线与直线x+8y=0垂直,可得2a=8,即a=4,则f(x)=4x2-1,1f(n)=14n2-1=12(12n-1-12n+1),可得=12(1-12n+1)=n2n+1故答案为:n2n+1三、解答题13、已知an是各项均为正数的等比数列,且a1+a2=6,a1a2
15、=a3()求数列an的通项公式;()bn为各项非零的等差数列,其前n项和为Sn.已知S2n+1=bnbn+1,求数列bnan的前n项和Tn【答案】解:()记正项等比数列an的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,qa12=q2a1,解得:a1=q=2,所以an=2n;()因为bn为各项非零的等差数列,所以S2n+1=(2n+1)bn+1,又因为S2n+1=bnbn+1,所以bn=2n+1,bnan=2n+12n,所以Tn=312+5122+(2n+1)12n,12Tn=3122+5123+(2n-1)12n+(2n+1)12n+1,两式相减得:12Tn=312+
16、2(122+123+12n)-(2n+1)12n+1,即12Tn=312+(12+122+123+12n-1)-(2n+1)12n+1,即Tn=3+1+12+122+123+12n-2-2n+112n=3+1-12n-11-12-2n+112n=5-2n+52n 14、在公差为d的等差数列an中,a12+a22=a1+a2(1)求d的取值范围;(2)已知d=-1,试问:是否存在等差数列bn,使得数列1an2+bn的前n项和为nn+1?若存在,求bn的通项公式;若不存在,请说明理由【答案】解:(1)公差为d的等差数列an中,a12+a22=a1+a2,a12+(a1+d)2=2a1+d,2a12
17、+(2d-2)a1+d2-d=0,dR,=(2d-2)2-8(d2-d)0解得-1d1d的取值范围为-1,1(2)d=-1,2a12-4a1+2=0,即a1=1,则an=2-n假设存在等差数列bn,则1a12+b1=121a12+b1+1a22+b2=23,即11+b1=1212+1b2=23,解得b1=1b2=6,从而bn=5n-4,此时1an2+bn=1n2+n=1n-1n+1,1a12+b1+1a22+b2+1an2+bn=1-12+12-13+1n-1n+1=1-1n+1=nn+1,故存在等差数列bn,且bn=5n-4,使得数列1an2+bn的前n项和为nn+1 15、已知正项等比数列
18、an的前n项和为Sn,a1=2,2S2=a2+a3(1)求数列an的通项公式;(2)设bn=2n-1an+2log2an,求数列bn的前n项和【答案】解:(1)因为2S2=a2+a3,所以2a1+a2=a3,所以q2-q-2=0,解得q=2所以an=2n(2)由题意得bn=(2n-1)(12)n+2n令cn=(2n-1)(12)n,其前n项为Pn,则Pn=1(12)+3(12)2+(2n-1)(12)n12Pn=1(12)2+3(12)3+(2n-3)(12)n+(2n-1)(12)n+1两式相减得:12Pn=12+(12)2+(12)3+(12)n-(2n-1)(12)n+1=12+2141
19、-(12)n-11-12-(2n-1)(12)n+1=32-(12)n-1-(2n-1)(12)n+1所以Pn=3-(2n+3)(12)n,而2(1+2+n)=2n(n+1)2=n(n+1),所以数列bn的前n项和Tn=3-(2n+3)(12)n+n(n+1) 16、已知an是公差不为零的等差数列,满足a3=7,且a2、a4、a9成等比数列(1)求数列an的通项公式;(2)设数列bn满足bn=anan+1,求数列1bn的前n项和Sn【答案】解:(1)设数列an的公差为d,且d0,由题意得a42=a2a9a3=7,即(7+d)2=(7-d)(7+6d)a1+2d=7,解得d=3,a1=1,所以数列an的通项公式an=3n-2;(2)由(1)得bn=anan+1=(3n-2)(3n+1),1bn=13(13n-2-13n+1),则Sn=1b1+1b2+1bn=13(1-14+14-17+13n-2-13n+1)=13(1-13n+1)=n3n+1