1、命题点33利用导数研究不等式12023安徽马鞍山模拟已知函数f(x)(x12a)ln (xa).(1)当a2时,求函数f(x)的极值;(2)当xa1时,f(x)x1恒成立,求实数a的取值范围解:22023新课标卷已知函数f(x)a(exa)x.(1)讨论f(x)的单调性;(2)证明:当a0时,f(x)2lna.解:32020新高考卷已知函数f(x)aex1lnxlna.(1)当ae时,求曲线yf(x)在点(1,f(1)处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围解:42023河北衡水模拟已知函数f(x)exx2ax(aR).(1)若f(x)在R上是增函数,求a的取值
2、范围;(2)若当a时,f(x)有两个极值点m,n,证明:0时,f(x)ln (n1).解:62023新课标卷(1)证明:当0x1时,xx2sinxx;(2)已知函数f(x)cosaxln (1x2),若x0是f(x)的极大值点,求a的取值范围解:命题点33利用导数研究不等式(大题突破)1解析:(1)当a2时,f(x)ln (x2)ln (x2)1,定义域为(2,),则f(x)在(2,)上单调递增,因为f(3)0,所以x(2,3),f(x)0,f(x)单调递增,所以函数f(x)的极小值为f(3)0,无极大值(2)令txa1,则f(x)x1即(t1a)lntta1,因为1lnt0,即a1在t1时恒
3、成立,令g(t)1,g(t)0,故g(t)单调递增,所以g(t)g(1)0,故a(,0.2解析:(1)f(x)aex1,当a0时,f(x)0,所以函数f(x)在(,)上单调递减;当a0时,令f(x)0,得xlna,令f(x)0,得x0时,函数f(x)在(,lna)上单调递减,在(lna,)上单调递增(2)方法一由(1)得当a0时,函数f(x)a(exa)x的最小值为f(lna)a(elnaa)lna1a2lna,令g(a)1a2lna2lnaa2lna,a(0,),所以g(a)2a,令g(a)0,得a;令g(a)0,得0a0,所以当a0时,f(x)2lna成立方法二当a0时,由(1)得,f(x
4、)minf(lna)1a2lna,故欲证f(x)2lna成立,只需证1a2lna2lna,即证a2lna.构造函数u(a)lna(a1)(a0),则u(a)1,所以当a1时,u(a)0;当0a0.所以函数u(a)在(0,1)上单调递增,在(1,)上单调递减,所以u(a)u(1)0,即lnaa1,故只需证a2a1,即证a2a0,因为a2a(a)20恒成立,所以当a0时,f(x)2lna成立3解析:f(x)的定义域为(0,),f(x)aex1.(1)当ae时,f(x)exlnx1,f(1)e1,曲线yf(x)在点(1,f(1)处的切线方程为y(e1)(e1)(x1),即y(e1)x2.直线y(e1
5、)x2在x轴,y轴上的截距分别为,2.所以S2,因此所求三角形的面积为.(2)当0a1时,f(1)alna1,不符合题意当a1时,f(x)ex1lnx,f(x)ex1.当x(0,1)时,f(x)0.所以当x1时,f(x)取得最小值,最小值为f(1)1,从而f(x)1.当a1时,f(x)aex1lnxlnaex1lnxxlnx1.综上,a的取值范围是1,).4解析:(1)xR,若f(x)在R上是增函数,则f(x)exexa0,即aexex在xR上恒成立,a(exex)min,令g(x)exex,xR,g(x)exe,当x1时,g(x)0,当x1时,g(x)n,所以f(x)0有2个不同的解m,n,
6、由(1)可知n1m,且f(m)f(n)0,要证e1,即证f(m)(e1)m0,f(2)e22ea0,所以0n1m1时,m(t)0,当t1时,m(t)0,所以h(t)在(1,2)上单调递增,在(0,1)上单调递减,又h(0)2ae0,h(2)0,所以h(t)0,所以h(t)在(0,2)上单调递减,所以h(m)h(n),即原命题得证5解析:(1)当a1时,f(x)xexex(x1)ex,f(x)ex(x1)exxex.令f(x)0,得x0,当x0时,f(x)0时,f(x)0,f(x)单调递增f(x)在(,0)上单调递减,在(0,)上单调递增(2)f(x)eaxaeaxxex(ax1)eaxex,f
7、(0)0.设g(x)(ax1)eaxex,则g(x)aeaxaeax(ax1)ex(a2x2a)eaxex,g(0)2a1.当2a10,即a时,存在0,使得当x(0,)时,g(x)0,此时f(x)在(0,)上单调递增f(x)f(0)0,f(x)在(0,)上单调递增,f(x)f(0)1,这与f(x)1矛盾,故舍去当2a10,即a时,f(x)xexex.令h(x)xexex,则h(x)exexxexex(1xex)0,h(x)在(0,)上单调递减,此时h(x)0时,xexex1,x1,则x2lnt,2lnt1.取t(nN*),则2lntln (n1)lnnln2ln1ln3ln2ln (n1)ln
8、nln (n1),故结论得证6解析:(1)令h(x)xx2sinx,则h(x)12xcosx,令p(x)12xcosx,则p(x)2sinx0,所以p(x)即h(x)单调递减,又h(0)0,所以当0x1时,h(x)h(0)0,h(x)单调递减,所以当0x1时,h(x)h(0)0,即xx2sinx.令g(x)sinxx,则g(x)cosx10,所以g(x)单调递减,又g(0)0,所以当0x1时,g(x)g(0)0,即sinxx.综上,当0x1时,xx2sinxx.(2)方法一因为f(x)cosaxln (1x2)(1x1),所以f(x)f(x),所以f(x)为偶函数f(x)asinax(1x1)
9、,令t(x)asinax(1x1),则t(x)a2cosax(1x1).令n(x)a2cosax,则n(x)a3sinax.当a0时,当0x0,f(x)单调递增,当1x0时,f(x)0时,取与1中的较小者,为m,则当0x0,所以n(x)即t(x)在(0,m)上单调递增,所以t(x)t(0)2a2.当2a20,即00(0xt(0)0,即f(x)0.那么f(x)在(0,m)上单调递增,由偶函数性质知f(x)在(m,0)上单调递减故x0是f(x)的极小值点,不符合题意当2a2时,当时,因为t(0)0,所以t(x)在(0,m)上存在唯一零点x1,且当0xx1时,t(x)0,t(x)单调递减,因为t(0)0,所以当0xx1时,t(x)0,即f(x)1,即a时,因为t(0)0,所以t(x)在(0,m)上存在唯一零点x2,且当0xx2时,t(x)0,t(x)单调递减因为t(0)0,所以当0xx2时,t(x)0,即f(x)满足题意当a0时,由偶函数图象的对称性可得a.综上所述,a的取值范围是(,)(,).方法二由f(x)cosaxln (1x2),得f(x)asinax(1x1),令t(x)asinax(1x1),则t(x)a2cosax(1x1).由x0是f(x)的极大值点,易得f(0)0,t(0)0,所以2a20,解得a.所以a的取值范围是(,)(,).