1、高三数学(理)一轮复习 学案 第三编 导数及其应用 总第13期 3.2 导数的应用班级 姓名 等第 基础自测1.函数y=f(x)的图象过原点且它的导函数g=f(x)的图象是如图所示的一条直线,则y=f(x)图象的顶点在第 象限.2.已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时,f(x) 0,g(x) 0.(用“”, “=”,“”填空)3.(2008广东理,7)设aR,若函数y=eax+3x,xR有大于零的极值点,则a的取值范围是 .4.函数y=3x2-2lnx的单调增区间为 ,单调减区间为 .5.(2008江苏,14)f(x)=a
2、x3-3x+1对于x-1,1总有f(x)0成立,则a= .例题精讲 例1 已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-,0上单调递减,在0,+)上单调递增?若存在,求出a的值;若不存在,说明理由.例2 已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在-3,1上的最大值和最小值.例3 (14分)已知函数f(x)=x2e-ax(a0),求函数在1,2上的最大值.例4 某
3、分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3a5)的管理费,预计当每件产品的售价为x元(9x11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).巩固练习 1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.
4、2.求函数y=x4-2x2+5在区间-2,2上的最大值与最小值.3.(2008山东理,21)已知函数f(x)=+aln(x-1),其中nN*,a为常数.(1)当n=2时,求函数f(x)的极值;(2)当a=1时,证明:对任意的正整数n,当x2时,有f(x)x-1.4.某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?回固总结 知识 方法 思想