收藏 分享(赏)

人教版高中数学复习学(教)案(第12讲)函数的图像.doc

上传人:高**** 文档编号:224875 上传时间:2024-05-26 格式:DOC 页数:8 大小:678KB
下载 相关 举报
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第1页
第1页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第2页
第2页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第3页
第3页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第4页
第4页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第5页
第5页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第6页
第6页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第7页
第7页 / 共8页
人教版高中数学复习学(教)案(第12讲)函数的图像.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、题目 第二章函数函数的图像高考要求 1掌握描绘函数图象的两种基本方法描点法和图象变换法2会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题3用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题4掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力知识点归纳1作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:确定函数的定义域;化简函数的解析式;讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);描点连线,画出函数的图象。 2三种图象变换:平移变换、对称变换和伸缩变换等等;3识图:分布范围、变化趋势、对称性、周期性等等方面4平移变换:(1

2、)水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到 y=f(x)y=f(x+h); y=f(x) y=f(x-h);y=f(x) y=f(x)+h; y=f(x) y=f(x)-h.5对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到;(4)函数的图像可以将函数的图像关于直线对称得到y=f(x) y= -f(x); y=f(x) y=f(-x);y=f(x) y=f(2a-x)

3、; y=f(x) y=f-1(x); y=f(x) y= -f(-x).6翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到 7伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到y=f(x)y=f(); y=f(x)y=f(x).以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种

4、方法是本节的重点运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线要把表列在关键处,要把线连在恰当处这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换这也是个难点题型讲解 1作函数图象的一个基本方法例1函数与的图像如下图:则函数的图像可能是( ) 解:函数的定义域是函数与的定义域的交集,图像不经过坐标原点,故可以排除C、D。由于当x为很小的正数时且,故。选A.例2 说明由函数的图像经过怎样的图像变换得到函数的图像解:方法一:

5、(1)将函数的图像向右平移3个单位,得到函数的图像;(2)作出函数的图像关于轴对称的图像,得到函数的图像;(3)把函数的图像向上平移1个单位,得到函数的图像方法二:(1)作出函数的图像关于轴的对称图像,得到的图像;(2)把函数的图像向左平移3个单位,得到的图像;(3)把函数的图像向上平移1个单位,得到函数的图像例3设曲线的方程是,将沿轴、轴正方向分别平移、个单位长度后得到曲线,(1)写出曲线的方程;(2)证明曲线与关于点对称;(3)如果曲线与有且仅有一个公共点,证明:解:(1)曲线的方程为;(2)证明:在曲线上任意取一点,设是关于点的对称点,则有,代入曲线的方程,得的方程:即可知点在曲线上反过

6、来,同样证明,在曲线上的点的对称点在曲线上因此,曲线与关于点对称(3)证明:因为曲线与有且仅有一个公共点,方程组有且仅有一组解,消去,整理得,这个关于的一元二次方程有且仅有一个根,即得,因为,所以例4(1)试作出函数的图像;(2)对每一个实数,三个数中最大者记为,试判断是否是的函数?若是,作出其图像,讨论其性质(包括定义域、值域、单调性、最值);若不是,说明为什么?解:(1),为奇函数,从而可以作出时的图像,又时,时,的最小值为2,图像最低点为,又在上为减函数,在上是增函数,同时即以为渐近线,于是时,函数的图像应为下图,图象为图:(2)是的函数,作出的图像可知,的图像是图中实线部分定义域为;值

7、域为;单调增区间为;单调减区间为;当时,函数有最小值1;函数无最大值学生练习 1下列每组两个函数的图象中,正确的是( )2已知函数f(x)=(x-1)/a (a0,a1),在同一坐标系中,y=f-1(x)与y=a|x-1|的图象只可能是( ) 3在下列图象中,二次函数y=ax2+bx与指数函数y=的图象只可能是4已知函数y=a/x与y=ax2+bx, 则下列图象正确的是( )5函数y=的图象是( ) 6函数y=(3x-1)/(x+2)的图象 ( )A.关于点(-2,3)对称 B.关于点(2,-3)对称 C.关于直线x= -2对称 D.关于直线y= -3对称7若第一个函数y=f(x), 它的反函

8、数是第二个函数,又第三个函数图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数的图象是( )A.y= -f-1(x) B.y= -f-1(-x) C.y= -f(x) D.y= -f(-x)8设函数y=f(x)定义在实数集上,则函数y=f(x-1)与y= -f(1-x)的图象关于( )对称A.直线x=0 B.直线x=1 C.点(0,0) D.点(1,0)9在以下四个按对应图象关系式画出的略图中,不正确的是( )Ay=|log2x| B.y=2|x| C.y=log0.5x2 D.y=|x-1/3| 10已知函数y=f(x)的图象如图,则y=f(1-x)的图象是 ( ) 11下列命题中

9、:函数y=f(x)的图象与x=f(y)的图象关于直线y=x对称;若f(x)= -f(-x),则f(x)的图象关于原点对称;若f(x)=f(-x)则f(x)的图象关于y轴对称;y=f(x)的图象与y= -f(x)的图象关于y轴对称,其中真命题是( )(A) (B) (C) (D)全都是12把函数y=cosx的图象向右平移1/2个单位,再把图象上点的横坐标缩小到原来的1/2,所得图象的解析式为 ;13画出下列函数的图象:(1)y=lg|x+1|; (2)y=(x+2)/(x+3).14若函数y=log2|ax-1|图象的对称轴是x=2,则非零实数a的值为_15.函数y=f(|x-m|)的图象与y=

10、f(|x|)的图象关于直线 对称.16.将函数y=f(x)的图象向右平移2个单位,再把图象上点的横坐标变为原来的1/3,所得图象的解析式为_.17. 如下图所示,向高为的水瓶同时以等速注水,注满为止;(1)若水深与注水时间的函数图象是下图中的,则水瓶的形状是 ;(2)若水量与水深的函数图像是下图中的,则水瓶的形状是 ;(3)若水深与注水时间的函数图象是下图中的,则水瓶的形状是 ;(4)若注水时间与水深的函数图象是下图中的,则水瓶的形状是 18已知f(x)=ax3+bx2+cx+d的图象如图所示,则b的取值范围是 19.说出作出函数y=log2(1-x) 的图象的过程。20方程|x2+2x-3|

11、=a(x-2)有四个实数根,求实数a的取值范围。21讨论方程=kx的实数根的个数。参考答案:1 D 2 C D 3 A 4 C 5 C 6 A 7D 8 D 9 C 10 C 11 C12y=cos(2x-1/2). 设P1(x1,y1)为原图象上的点,通过变换后得到新图象上一点P(x,y),则x=(x1+1/2)/2, x1=2x-1/2, y1=y, 代入y1=cosx1得到 y=cos(2x-1/2).13 (1)此函数由函数y=lg|x|向左平移1个单位而得到;(2)y=1-1/(x+3)由函数y=1/x向左平移3个单位再向上平移1个单位而得到,注意渐近线的变化。14 1/2 15. x=m/2 16. y=f(3x-2)。17. (1) C ;(2) A ;(3) D ;(4)B 18 (-,0) 19.先作y=log2x关于y轴对称的图象,再沿x轴向右平移一个单位得到。20 x2+(2+a)x-2a-3=0, 由=0以及-(2+a)/21可得a= -6+2, -6+2a1/2时一个交点,k=1/2时两个交点,0k1/2时三个交点。课前后备注

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3