收藏 分享(赏)

2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc

上传人:高**** 文档编号:194985 上传时间:2024-05-26 格式:DOC 页数:9 大小:1.06MB
下载 相关 举报
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第1页
第1页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第2页
第2页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第3页
第3页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第4页
第4页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第5页
第5页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第6页
第6页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第7页
第7页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第8页
第8页 / 共9页
2018版数学《学案导学与随堂笔记》北师大版选修2-2学案:第三章 导数应用 2-1 WORD版含答案.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.1实际问题中导数的意义学习目标1.了解导数在实际问题中的意义.2.能用导数解释一些实际问题知识点实际问题中导数的意义思考1实际问题中平均变化率的意义是什么?答案实际问题中的平均变化率指的是:在一个区间x1,x2内一个量变化的平均速度思考2在实际问题中,导数有什么作用?答案导数可以刻画事物变化快慢的程度梳理用导数处理实际问题的流程类型一导数在物理学中的应用例1物体作自由落体运动,其方程为s(t)gt2.(其中位移单位:m,时间单位:s,g9.8m/s2)(1)计算当t从2s变到4s时位移s关于时间t的平均变化率,并解释它的意义;(2)求当t2s时的瞬时速度,并解释它的意义解(1)当t从2s变

2、到4s时,位移s从s(2)变到s(4),此时,位移s关于时间t的平均变化率为9.8329.4(m/s)它表示物体从2s到4s这段时间平均每秒下落29.4m.(2)s(t)gt,s(2)2g19.6(m/s)它表示物体在t2s时的瞬时速度为19.6m/s.反思与感悟(1)函数yf(x)在x0处的导数f(x0)就是导函数在x0处的函数值(2)瞬时速度是运动物体的位移s(t)对于时间的导数,即v(t)s(t)(3)瞬时加速度是运动物体的速度v(t)对于时间的导数,即a(t)v(t)跟踪训练1某人拉动一个物体前进,他所做的功W(单位:J)是时间t(单位:s)的函数,设这个函数可以表示为WW(t)t36

3、t216t.(1)求t从1s变到3s时,功W关于时间t的平均变化率,并解释实际意义;(2)求W(1),W(2),并解释它们的实际意义解(1)当t从1s变到3s时,功W从W(1)11J变到W(3)21J,此时功W关于时间t的平均变化率为5(J/s)它表示从t1s到t3s这段时间,这个人平均每秒做功5J.(2)首先求W(t),根据导数公式和求导法则可得W(t)3t212t16,W(1)7J/s,W(2)4 J/s.W(1)和W(2)分别表示t1s和t2s时,这个人每秒做的功为7J和4J.类型二导数在经济生活中的应用例2某机械厂生产某种机器配件的最大生产能力为每日100件,假设日产品的总成本C(元)

4、与日产量x(件)的函数关系为C(x)x260x2050.求当日产量由10件提高到20件时,总成本的平均改变量,并说明其实际意义解当x从10件提高到20件时,总成本C从C(10)2675元变到C(20)3350元此时总成本的平均改变量为67.5(元/件),其表示日产量从10件提高到20件时平均每件产品的总成本的改变量引申探究若本例的条件不变,求当日产量为75件时的边际成本,并说明其实际意义解因为C(x)x60,所以C(75)756097.5(元/件),它指的是当日产量为75件时,每多生产一件产品,需增加成本97.5元反思与感悟实际生活中的一些问题,如在生活和生产及科研中经常遇到的成本问题、用料问

5、题、效率问题和利润等问题,在讨论其改变量时常用导数解决跟踪训练2东方机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)2x27000x600.(1)求产量为1000台的总利润与平均利润;(2)求产量由1000台提高到1500台时,总利润的平均改变量;(3)求c(1000)与c(1500),并说明它们的实际意义解(1)产量为1000台时的总利润为c(1000)210002700010006005000600(元),平均利润为5000.6(元)(2)当产量由1000台提高到1500台时,总利润的平均改变量为2000(元)(3)c(x)(2x27000x600)4x70

6、00,c(1000)4100070003000(元)c(1500)4150070001000(元)c(1000)3000表示当产量为1000台时,每多生产一台机械可多获利3000元c(1500)1000表示当产量为1500台时,每多生产一台机械可多获利1000元1一个物体的运动方程为s(t)1tt2,其中s的单位是m,t的单位是s,那么物体在3s末的瞬时速度是()A7m/s B6 m/sC5m/s D8 m/s答案C解析s(t)2t1,s(3)2315.2某旅游者爬山的高度h(单位:m)关于时间t(单位:h)的函数关系式是h(t)100t2800t,则他在t2h这一时刻的高度变化的速度是()A

7、500m/h B1 000 m/hC400m/h D1 200 m/h答案C解析h200t800,当t2时,h(2)400.3圆的面积S关于半径r的函数关系式是S(r)r2,那么在r3时面积的变化率是()A6B9C9D6答案D解析S(r)2r,S(3)236.4正方形的周长y关于边长x的函数是y4x,则y_,其实际意义是_答案4边长每增加一个单位,周长增加4个单位5某汽车的路程函数是s(t)2t3gt2(g10m/s2),则当t2 s时,汽车的加速度是_ m/s2.答案14解析v(t)s(t)6t2gt,a(t)v(t)12tg,a(2)1221014(m/s2)1要理解实际问题中导数的意义,

8、首先要掌握导数的定义,然后再依据导数的定义解释它在实际问题中的意义2实际问题中导数的意义(1)功关于时间的导数是功率(2)降雨量关于时间的导数是降雨强度(3)生产成本关于产量的导数是边际成本(4)路程关于时间的导数是速度(5)速度关于时间的导数是加速度课时作业一、选择题1某汽车启动阶段的路程函数为s(t)2t35t2(t表示时间),则当t2时,汽车的加速度是()A14B4C10D6答案A解析v(t)s(t)6t210t,v(t)12t10,当t2时,v(2)241014.2某汽车的紧急刹车在遇到特别情况时需在2s内完成刹车,其位移(单位:m)关于时间(单位:s)的函数为s(t)t34t220t

9、15,则s(1)的实际意义为()A汽车刹车后1s内的位移B汽车刹车后1s内的平均速度C汽车刹车后1s时的瞬时速度D汽车刹车后1s时的位移答案C解析由导数的实际意义知,位移关于时间的瞬时变化率为该时刻的瞬时速度3某公司的盈利y(元)和时间x(天)的函数关系是yf(x),假设f(x)0恒成立,且f(10)10,f(20)1,则这些数据说明第20天与第10天比较()A公司已经亏损B公司的盈利在增加,但增加的幅度变小C公司在亏损且亏损幅度变小D公司的盈利在增加,增加的幅度变大答案B解析因为导数的含义是变化率,f(10)f(20)0.4汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽

10、车的行驶路程s看作时间t的函数,其图像可能是()答案A解析根据变化率的大小判断5细杆AB的长为20cm,M为细杆AB上的一点,AM段的质量与A到M的距离的平方成正比,当AM2cm时,AM的质量为8g,那么当AMxcm时,M处的细杆线密度(x)为()A2xB3xC4xD5x答案C解析设m(x)kx2,当AM2时,m(2)k228,k2.m(x)2x2.(x)m(x)4x.6如图,设有定圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图像大致是()答案D解析用变化率分析,开始和即将结束时,变化率小,中间变化率大,故选D.二、

11、填空题7一质点沿直线运动,如果由始点起经过ts后的位移为s3t2t,则速度v10时的时刻t_.答案解析s6t110,t.8若某段导体通过的电量Q(单位:C)与时间t(单位:s)的函数关系为Qf(t)t2t80,t0,30,则f(15)_,它的实际意义是_答案C/st15s时的电流强度为C/s9酒杯的形状为倒立的圆锥(如图),杯深8cm,上口宽6cm,水以20cm3/s的流量倒入杯中,当水深为4cm时,水升高的瞬时变化率为_答案cm/s10设P为曲线C:yx22x3上的点,且曲线C在点P处的切线倾斜角的范围为,则点P横坐标的取值范围为_答案解析令yf(x)x22x3.f(x)2x2,可设P点横坐

12、标为x0,则曲线C在P点处的切线斜率为2x02.由已知得02x021,1x0,点P横坐标的取值范围为.三、解答题11某厂生产某种产品x件的总成本c(x)120(元)(1)当x从200变到220时,总成本c关于产量x的平均变化率是多少?它代表什么实际意义?(2)求c(200),并解释它代表什么实际意义?解(1)当x从200变到220时,总成本c从c(200)540元变到c(220)626元此时总成本c关于产量x的平均变化率为4.3(元/件),它表示产量从x200件变化到x220件时,平均每件的成本为4.3元(2)c(x),于是c(200)44.1(元/件)它指的是当产量为200件时,每多生产一件

13、产品,需增加4.1元成本12江轮逆水上行300km,水速为6km/h,船相对于水的速度为x km/h,已知船航行时每小时的耗油量为0.01x2L,即与船相对于水的速度的平方成正比(1)试写出江轮在此行程中耗油量y关于船相对于水的速度x的函数关系式:yf(x);(2)求f(36),并解释它的实际意义(船的实际速度船相对水的速度水速)解(1)船的实际速度为(x6) km/h,故全程用时h,所以耗油量y关于x的函数关系式为yf(x)(x6)(2)f(x)3,f(36)2.88(),f(36)表示当船相对于水的速度为36km/h时,耗油量增加的速度为2.88,也就是说当船相对于水的速度为36km/h时

14、,船的航行速度每增加1 km/h,耗油量就要增加2.88L.13在F1赛车中,赛车位移s与比赛时间t存在函数关系s10t5t2(s的单位为m,t的单位为s)求:(1)t20,t0.1时的s与;(2)求t20时的瞬时速度解(1)因为ss(20.1)s(20)(1020.1520.12)(10205202)21.05(m),所以210.5(m/s)(2)因为s1010t,所以当t20时,s101020210(m/s),即当t20时的瞬时速度为210m/s.四、探究与拓展14如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数

15、关系图像,它们之间的对应关系分别是_答案BADC解析本题主要考查通过函数图像,不仅可以看出函数的增与减,还可以看出其增减的快慢,以容器为例,由于容器上细下粗,所以水以恒速注入时,开始阶段高度增加得慢,以后高度增加得越来越快,反映在图像上,A符合上述变化情况,同理可知其他三种容器的情况15一个电路中,流过的电荷量Q(单位:C)关于时间t(单位:s)的函数为Q(t)3t2lnt.(1)求当t从1变到2时,电荷量Q关于t的平均变化率,并解释它的实际意义;(2)求Q(2),并解释它的实际意义解(1)当t从1变到2时,电荷量从Q(1)变到Q(2),此时电荷量关于时间t的平均变化率为8.31,它表示从t1s到t2s这段时间内,平均每秒经过该电路的电量为8.31C,也就是这段时间内电路的平均电流为8.31A.(2)Q(t)6t,Q(2)11.5,它的实际意义是在t2s这一时刻经过该电路的电量为11.5C,也就是这一时刻电路的电流为11.5A.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3