1、学业分层测评(建议用时:45分钟)学业达标一、选择题1从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)()A.B.C. D.【解析】P(A),P(AB),P(B|A).【答案】B2下列说法正确的是()AP(B|A)P(AB) BP(B|A)是可能的C0P(B|A)1 DP(A|A)0【解析】由条件概率公式P(B|A)及0P(A)1知P(B|A)P(AB),故A选项错误;当事件A包含事件B时,有P(AB)P(B),此时P(B|A),故B选项正确,由于0P(B|A)1,P(A|A)1,故C,D选项错误故选B.【答案】B3(20
2、14全国卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A0.8B0.75C0.6D0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P0.8.【答案】A4(2016泉州期末)从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A. B. C. D.【解析】法一:P(A),P(AB),P(B|A).法二:事件
3、A包含的基本事件数为CC4,在A发生的条件下事件B包含的基本事件为C1,因此P(B|A).【答案】B5抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A. B. C. D.【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)6530,n(AB)10,所以P(A|B).【答案】A二、填空题6已知P(A)0.2,P(B)0.18,P(AB)0.12,则P(A|B)_,P(B|A)_.【解析】P(A|B);P(B|A).【答案】7设A,B为两个事件,若事件A和B同时发生的概率为,在事件A发生的条件下,事件B发生的概率为,则事件A发生的概率为_
4、. 【导学号:97270038】【解析】由题意知,P(AB),P(B|A).由P(B|A),得P(A).【答案】8有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是_【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则DBC,且B与C互斥,又P(A),P(AB),P(AC),故P(D|A)P(BC|A)P(B|A)P(C|A).【答案】三、解答题9甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干每个袋子中标号为0的小球为1个,标号为1的2个,
5、标号为2的n个从一个袋子中任取两个球,取到的标号都是2的概率是.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率【解】(1)由题意得:,解得n2.(2)记“其中一个标号是1”为事件A,“另一个标号是1”为事件B,所以P(B|A).10任意向x轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间内的概率是多少?(2)在(1)的条件下,求该点落在内的概率【解】由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A,由几何概率的计算公式可知(1)P(A).(2)令B,则AB,P(AB).故在A的条件下B发生的概率
6、为P(B|A).能力提升1一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是()A. B. C. D.【解析】一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女)记事件A为“其中一个是女孩”,事件B为“另一个是女孩”,则A(男,女),(女,男),(女,女),B(男,女),(女,男),(女,女),AB(女,女)于是可知P(A),P(AB).问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A).【答案】D2(2016开封高二检测)将3颗骰子各掷一次,记事件A表示“三个点数都
7、不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.B.C.D.【解析】事件B发生的基本事件个数是n(B)66655591,事件A,B同时发生的基本事件个数为n(AB)35460.所以P(A|B).【答案】C3袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为_【解析】记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才取到黄球”为事件C,所以P(C)P(AB)P(A)P(B|A).【答案】4如图221,三行三列的方阵有9个数aij(i1,2,3,j1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率图221【解】事件A任取的三个数中有a22,事件B三个数至少有两个数位于同行或同列,则三个数互不同行且不同列,依题意得n(A)C28,n(A)2,故P(|A),则P(B|A)1P(|A)1.即已知取到a22的条件下,至少有两个数位于同行或同列的概率为.