1、第十七周周清函数变化率与导数核心知识1函数的平均变化率一般地,已知函数yf(x),x0,x1是其定义域内不同的两点,记xx1x0,yy1y0f(x1)f(x0)f(x0x)f(x0),则当x0时,商_称作函数yf(x)在区间x0,x0x(或x0x,x0)的平均变化率2函数yf(x)在xx0处的导数(1)定义函数yf(x)在点x0处的瞬时变化率_通常称为f(x)在xx0处的导数,并记作f(x0),即_(2)几何意义函数f(x)在点x0处的导数f(x0)的几何意义是过曲线yf(x)上点(x0,f(x0)的_导函数yf(x)的值域即为_3函数f(x)的导函数如果函数yf(x)在开区间(a,b)内每一
2、点都是可导的,就说f(x)在开区间(a,b)内可导,其导数也是开区间(a,b)内的函数,又称作f(x)的导函数,记作_自我检测1在曲线yx21的图象上取一点(1,2)及附近一点(1x,2y),则为 ()Ax2Bx2Cx2D2x2.利用导数的定义求函数的导数:(1)f(x)在x1处的导数;(2)f(x).3.已知曲线yx3.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程4.求曲线f(x)x33x22x过原点的切线方程核心知识1.2.(1)(2)切线的斜率切线斜率的取值范围3.y或f(x)自我检测1C 2.解(1),.(2),.3.解(1)4xy40.(2)4xy40或xy20.(3)3x3y20和xy20.4解 (1) y2x.(2)y2x或yx.