1、1.3 集合的运算(1)【教学目标】1知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。2过程与方法通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.3情感、态度与价值观通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.【教学重点】交集、并集运算的含义,识记
2、与运用.【教学难点】弄清交集、并集的含义,认识符号之间的区别与联系【教学过程】一、 引入思考:观察下列各组集合,它们有什么特点?(1)A = 1,3,5,B = 2,4,6,C = 1,2,3,4,5,6(2)A = x | x是有理数,B = x | x是无理数,C = x | x是实数.师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,那集合是否有相应运算呢?生:集合C是由所有属于集合A或属于集合B的元素组成的.二、 学习新知1. 并集运算1)并集的定义:由所有属于集合或者属于集合的元素组成的集合叫做集合、的并集,记作,读作“并”,即,Venn图表示为:AB2)并集的运算
3、性质;若,则;若,则.2.交集运算1)交集的定义由集合和集合的所有公共元素组成的集合叫做与的交集,记作,读作“交”,即,Venn图表示为:ABAB2)交集的运算性质;若,则;若,则.三、例题讲解【例1】设A = 4,5,6,8,B = 3,5,7,8,求AB.解:AB = 4, 5, 6, 83, 5, 7, 8 = 3, 4, 5, 6, 7, 8.【例2】设集合A = x | 1x2,集合B = x | 1x3,求AB.1 0 1 2 3x解:AB = x |1x2x|1x3 = x = 1x3.【例3】已知集合A = 1,a2 + 1,a2 3,B = 4,a 1,a + 1,且AB =
4、 2,求a的值.解:(法一)AB = 2,2B,a 1 = 2或a + 1 = 2,解得a = 1或a = 3,当a = 1时,A = 1,2,2,B = 4,2,0,AB = 2.当a = 3时,A = 1,10,6,A不合要求,a = 3舍去a = 1.(法二)AB = 2,2A,又a2 + 11,a2 3 = 2,解得a =1,当a = 1时,A = 1,2,2,B = 4,0,2,AB2.当a = 1时,A = 1,2,2,B = 4,2,0,AB =2,a = 1.【例4】 集合A = x | 1x1,B = x | xa,(1)若AB =,求a的取值范围;(2)若AB = x |
5、x1,求a的取值范围.解:(1)如下图所示:A = x | 1x1,B = x | xa,且AB=,数轴上点x = a在x = 1左侧.a1.(2)如右图所示:A = x | 1x1,B = x | xa且AB = x | x1,数轴上点x = a在x = 1和x = 1之间. 1a1.【例5】已知集合A = x | x2 ax + a2 19 = 0,B = x | x2 5x + 6 = 0,C = x | x2 + 2x 8 = 0,求a取何实数时,AB 与AC =同时成立?解:B = x | x2 5x + 6 = 0 = 2,3,C = x | x2 + 2x 8 = 0 = 2,
6、4.由AB 和AC =同时成立可知,3是方程x2 ax + a2 19 = 0的解. 将3代入方程得a2 3a 10 = 0,解得a = 5或a = 2.当a = 5时,A = x | x2 5x + 6 = 0 = 2,3,此时AC = 2,与题设AC =相矛盾,故不适合.当a = 2时,A = x | x2 + 2x 15 = 0 = 3,5,此时AB 与AC =,同时成立,满足条件的实数a = 2.【例6】设集合A = x2,2x 1, 4,B = x 5,1 x,9,若AB = 9,求AB.解:由9A,可得x2 = 9或2x 1 = 9,解得x =3或x = 5.当x = 3时,A = 9,5, 4,B = 2,2,9,B中元素违背了互异性,舍去.当x = 3时,A = 9,7, 4,B = 8,4,9,AB = 9满足题意,故AB = 7, 4,8,4,9.当x = 5时,A = 25,9, 4,B = 0, 4,9,此时AB = 4,9与AB = 9矛盾,故舍去.综上所述,x = 3且AB = 8, 4,4,7,9.三、 课堂小结1. 交集的定义和性质2. 并集的定义和性质