1、动量与能量综合题整理1、如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧是一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O点相切。车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹簧,一质量m=1.0kg的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数。整个装置处于静止状态。现将轻弹簧解除锁定,小物体被弹出,恰能到达圆弧轨道的最高点A。不考虑小物体与轻弹簧碰撞时的能量损失,不计空气阻力。g取10m/s2,求:(1)解除锁定前轻弹簧的弹性势能;(2)小物体第二次经过O点时的速度大小;(3)最终小物体与车
2、相对静止时距O点的距离。2、如图所示,轻质弹簧将质量为m的小物块连接在质量为M(M=3m)的光滑框架内。小物块位于框架中心位置时弹簧处于自由长度现设框架与小物块以共同速度沿光滑水平面向左匀速滑动. (1)若框架与墙壁发生碰撞后速度为零,但与墙壁不粘连,求框架脱离墙壁后的运动过程中,弹簧弹性势能的最大值. (2)若框架与墙壁发生碰撞以一定速度反弹,在以后过程中弹簧的最大弹性势能为,求框架与墙壁碰撞时损失的机械能E1. (3)在(2)情形下试判定框架与墙壁能否发生第二次碰撞?若不能,说明理由若能,试求出第二次碰撞时损失的机械能E2.(设框架与墙壁每次碰撞前后速度大小之比不变)3、如图所示,两质量相
3、等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A当A、B加速度相等时,系统的机械能最大 B当A、B加速度相等时,A、B的速度差最大C当A、B的速度相等时,A的速度达到最大 D当A、B的速度相等时,弹簧的弹性势能最大4、如图所示,在同一竖直上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。小球受到弹簧的弹性力作用后,沿斜面向上运动。离开斜面后,达到最高点时与静止悬挂在此处的小球B发生弹性碰撞,碰撞后球B刚
4、好能摆到与悬点O同一高度,球A沿水平方向抛射落在水平面C上的P点,O点的投影O与P的距离为L/2。已知球B质量为m,悬绳长L,视两球为质点,重力加速度为g,不计空气阻力,求:学科网(1)球B在两球碰撞后一瞬间的速度大小;学(2)球A在两球碰撞后一瞬间的速度大小;学科网(3)弹簧的弹性力对球A所做的功。5、在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示,C与B发生碰撞并立即结成一个整体
5、D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。(1)求弹簧长度刚被锁定后A球的速度。(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能AB6、如图所示,质量为M的小车A右端固定一根轻弹簧,车静止在光滑水平面上,一质量为m的小物块B从左端以速度v0冲上小车并压缩弹簧,然后又被弹回,回到车左端时刚好与车保持相对静止求整个过程中弹 簧的最大弹性势能EP和B相对于车向右运动过程中系统摩擦生热Q各是多少
6、?简述B相对于车向右返回过程中小车的速度变化情况。7、用轻弹簧相连的质量均为2kg的A、B两物块都以的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图所示,B与C碰撞后二者粘在一起运动。求:在以后的运动中,(1)当弹簧的弹性势能最大时物体A的速度多大?(2)弹性势能的最大值是多大?(3)A的速度有可能向左吗?为什么?8、如图所示,一质量m2=0.25的平顶小车,车顶右端放一质量m3=0.2kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数=0.4,小车静止在光滑的水平轨道上。现有一质量m1=0.05kg的子弹以水平速度v0=12m/s射中小车左端,并留在车中。
7、子弹与车相互作用时间很短。若使小物体不从车顶上滑落,求:(1) 最后物体与车的共同速度为多少?小车的最小长度应为多少? (2)小木块在小车上滑行的时间。(g取10m/s2) 9、水平桌面上放着质量m1=2kg 的木板A ,木板A 上放着一个装有小马达的滑块B , 滑块和马达的总质量m2=1kg 一根细线一端拴在固定于桌面的小柱子上,另一端与小马达相连,如图所示,开始时,用手抓住木板A 使它不动,开启小马达,小马达转动时可以使细线卷在轴筒上,从而使滑块B 以v0=0.4m/s 的恒定速度在术板A上滑动当滑块B与木板A 右端相距L =1 m 时立即放开木板A。已知木板A 与滑块B、木板A 与地面之
8、间动摩擦因数分别为1=0.05和2=0.01.设最大静摩力等于滑动摩擦力(取g=10m/s2)(1)通过计算判断松手后木板A 是否会在桌面上滑动?(2)求松手后滑块B 与木块A相互摩擦而产生的内能E 10、图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l,开始时,轻绳处于水平拉直状态,小球和滑块均静止。现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘性物质的固定档板粘住,在极短的时间内速度减为零。小球继续向左摆动。当轻绳与竖直方向的夹角=60时小球达到最高点。(1)从滑块与档板接触到速度刚好变为零的过程中
9、,档板阻力对滑块的冲量;(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小。11、有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。(1)已知滑块质量为m,碰撞时间为,求碰撞过程中A对B平均冲力的大小。(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道)。a. 分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b. 在
10、OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45。求A通过M点时的水平分速度和竖直分速度。12、如图, 一质量为M的物块静止在桌面边缘, 桌面离水平面的高度为h. 一质量为m的子弹以水平速度v0射入物块后, 以水平速度v0/2射出. 重力加速度为g. 求(1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离13、一个物体静置于光滑水平面上,外面扣一质量为M的盒子,如图l所示。现给盒子一初速度v0,此后,盒子运动的v一t图象呈周期性变化,如图2所示。请据此求盒内物体的质量。14、光滑水平面上放着质量mA =1kg的物块A与质量为mB =2kg的物块B,A与B均可视为质点
11、,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能为Ep= 49J。在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能运动到最高点C。取g=10m/s2,求(1)绳拉断后瞬间B的速度vB的大小;(2)绳拉断过程绳对B的冲量I的大小;(3)绳拉断过程绳对A所做的功。15、一倾角为45的斜血固定于地面,斜面顶端离地面的高度h01m,斜面底端有一垂直于斜而的固定挡板。在斜面顶端自由释放一质量m0.09kg的小物块(视为质点)。
12、小物块与斜面之间的动摩擦因数0.2。当小物块与挡板碰撞后,将以原速返回。重力加速度g10 m/s2。在小物块与挡板的前4次碰撞过程中,挡板给予小物块的总冲量是多少?16、如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m的1/4圆弧面。A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑。小滑块P1和P2的质量均为m。滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为1=0.10和2=0.40,最大静摩擦力近似等于滑动摩擦力。开始时滑板紧靠槽的左端,P2静止在粗糙面的B点,P1以v0=4.0m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处
13、在粗糙面B点上。当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续运动,到达D点时速度为零。P1与P2视为质点,取g=10m/s2. 问:(1)P2在BC段向右滑动时,滑板的加速度为多大?(2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?17、如图所示,倾角为的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为,重力加速度为g.设碰撞时间极短,求(1)工人的推力;(2)三
14、个木箱匀速运动的速度;(3)在第一次碰撞中损失的机械能。18、如图所示,质量m1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0不超过多少。19、过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相
15、等,半径。一个质量为的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求 (1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B、C间距应是多少; (3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。20、如图19所示,水平地面上静止放置着物块B和C,相距=1.0m 。物块A以速度=10m/s沿水平方向与B正碰。
16、碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0m/s 。已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10m/s2)(1)计算与C碰撞前瞬间AB的速度;(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。21、两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止滑下,然后双滑上劈B。求物块在B上能够达到的最大高度。 22、如图所示,C是放在光
17、滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为。最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板。求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。23、如图,质量为M的平板车静止在光滑的水平地面上,小车的左端放一质量为m的木块,车的右端固定一个轻质弹簧,现给木块一个水平向右的瞬时冲量I,木块便沿车板向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能达到小车的左端。试求: (1)弹簧被压缩到最短时平板小
18、车的动量;(2)木块返回到小车左端时小车的动能;(3)弹簧获得最大弹性势能。24、如图所示,光滑水平面上放有A、B、C三个物块,其质量分别为mA=2.0kg,mB=mC=1.0kg,用一轻弹簧连接A、B两物块,现用力压缩弹簧使三物块靠近,此过程外力做功72J,然后释放,求:(1)释放后物块B对物块C一共做了多少功?(2)弹簧第二次被压缩时,弹簧具有的最大弹性势能为多大?25、如图所示,滑块A的质量m0.01 kg,与水平地面间的动摩擦因数=0.2,用细线悬挂的小球质量均为m=0.01 kg,沿x轴排列,A与第1只小球及相邻两小球间距离均为s=2 m,线长分别为L1、L2、L3(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v010 m/s沿x轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动并再次与滑块正碰,g取10 m/s2,求:学科网(1)滑块能与几个小球碰撞?学科网(2)求出碰撞中第n个小球悬线长Ln的表达式.学科网