1、阶段能力测试(一)(1.11.2)(时间:45分钟满分:100分)一、选择题(每小题5分,共30分)1菱形具有而矩形不具有的性质是(C)A两组对边分别平行 B对角线相等C.对角线互相垂直 D两组对角分别相等2如图,在菱形ABCD中,A130,连接BD,则DBC等于(A)A25 B35 C50 D65,第3题图)3如图,矩形ABCD的对角线AC与BD相交于点O,ADB30,AB4,则OC(B)A5 B4 C3.5 D34如图,将ABC沿BC方向平移得到DCE,连接AD,下列条件能够判定四边形ACED为菱形的是(B )AABBCBACBCCB60 DACB60,第4题图),第5题图)5如图,矩形A
2、BCD的顶点A,C分别在直线a,b上,且ab,160,则2的度数为(C )A30 B45 C60 D756如图,在矩形ABCD中,AB4,BC3,过对角线BD的中点O的直线分别交AB,CD边于点E,F.当四边形BEDF是菱形时,EF(B)A.B.C3D4.5,第6题图),第7题图)二、填空题(每小题5分,共20分)7如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为_菱形_8菱形的一个内角为120,边长为8,那么它较短的对角线的长是8.9(2018南通)如图,在ABC中,AD,CD分别平分BAC和ACB,AECD,CEAD.若从三个条件:
3、ABAC;ABBC;ACBC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是(填序号),第9题图),第10题图)10(2018本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当ODP为等腰三角形时,点P的坐标为(8,4)或(,7) .三、解答题(共50分)11(8分)(2018柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB2.(1)求菱形ABCD的周长;(2)若AC2,求BD的长解:(1)四边形ABCD是菱形,AB2,菱形ABCD的周长为8.(2)四边形ABCD是菱形,AC2,AB2,A
4、CBD,AO1,BO,BD2.12.(8分)如图,菱形ABCD中,分别延长DC,BC至点E,F,使CECD,CFCB,连接DB,BE,EF,FD.求证:四边形DBEF是矩形证明:CECD,CFCB,四边形DBEF是平行四边形,四边形ABCD是菱形,CDCB.CECF,BFDE,四边形DBEF是矩形13(10分)如图,在四边形ABCD中,ADBC,CA平分DCE,ABAC,E为BC的中点连接AE,求证:四边形AECD为菱形证明:ABAC,BAC90.在RtABC中,E是BC的中点,AECEBE,EACACE.CA平分DCE,ACEACD,EACACD,AECD.ADBC,四边形AECD是平行四边
5、形又AECE,平行四边形AECD是菱形14(12分)(2018乌鲁木齐)如图,在四边形ABCD中,BAC90,E是BC的中点,ADBC,AEDC,EFCD于点F.(1)求证:四边形AECD是菱形;证明:ADBC,AEDC,四边形AECD是平行四边形BAC90,E是BC的中点,AECEBC,四边形AECD是菱形(2)若AB6,BC10,求EF的长解:过点A作AHBC于点H,BAC90,AB6,BC10,AC8.SABCBCAHABAC,AH.点E是BC的中点,BC10,四边形AECD是菱形,CDCE5,S四边形AECDCEAHCDEF,EFAH.15(12分)如图,矩形ABCD中,BAD的平分线AE与BC边交于点E,点P是线段AE上一定点(其中PAPE),过点P作AE的垂线与AD边交于点F(不与点D重合)一直角三角形的直角顶点落在P点处,两直角边分别交AB,AD于点M,N.(1)求证:PAMPFN;(2)若PA3,求AMAN的长解:(1)证明:四边形ABCD是矩形,BAD90.AE平分BAD,BAEEAD45.PFAP,PAFPFA45,APPF.MPN90,APF90,MPNAPNAPFAPN.MPAFPN,且APPF,MAPPFA45,PAMPFN(ASA)(2)PA3,PAPF3.AF3.PAMPFN,AMNF,AMANANNFAF3.