收藏 分享(赏)

2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt

上传人:高**** 文档编号:155949 上传时间:2024-05-25 格式:PPT 页数:31 大小:1.16MB
下载 相关 举报
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第1页
第1页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第2页
第2页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第3页
第3页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第4页
第4页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第5页
第5页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第6页
第6页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第7页
第7页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第8页
第8页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第9页
第9页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第10页
第10页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第11页
第11页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第12页
第12页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第13页
第13页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第14页
第14页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第15页
第15页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第16页
第16页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第17页
第17页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第18页
第18页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第19页
第19页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第20页
第20页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第21页
第21页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第22页
第22页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第23页
第23页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第24页
第24页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第25页
第25页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第26页
第26页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第27页
第27页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第28页
第28页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第29页
第29页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第30页
第30页 / 共31页
2020-2021学年人教A版数学选修2-1课件:1-2 充分条件与必要条件 .ppt_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1.2 充分条件与必要条件目标定位重点难点1.理解充分条件、必要条件、充要条件的意义2.会判断所给条件是否是充分条件、必要条件和充要条件重点:理解充分条件、必要条件的意义难点:充分条件、必要条件与充要条件的判定1充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p_qp_q条件关系p是q的_条件q是p的_条件p不是q的_条件q不是p的_条件/充分必要充分必要2充要条件的概念(1)推出关系:pq且qp,记作_;(2)简称:p是q的充分必要条件,简称_;(3)意 义:pq,则 p 是 q 的 _ 条 件 或 q 是 p 的_条件,即p与q_.3充要条件的证明证明充要条件

2、应从两个方面证明,一是_,一是_pq充要条件充要充要互为充要条件充分性必要性1设a,b是向量,则“|a|b|”是“|ab|ab|”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件【答案】D【解析】|ab|ab|ab|2|ab|2ab0.而由|a|b|推不出ab0,且由ab0也推不出|a|b|.故选D2.(2020年山东日照模拟)“m0”是“函数f(x)mlog2x(x1)存在零点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】当m0时,由图象的平移变换可知,函数f(x)必有零点;当函数f(x)有零点时,m0,所以“m0

3、”是“函数f(x)mlog2x(x1)存在零点”的充分不必要条件.故选A.3.(2020 年湖南长沙模拟)“关于 x 的不等式 x2xm0 在R 上恒成立”的一个必要不充分条件是()A.m14 B.0m0 D.m1【答案】C【解析】若关于 x 的不等式 x2xm0 在 R 上恒成立,则(1)24m14,因此当关于 x 的不等式 x2xm0 在 R 上恒成立时,必有 m0,但当 m0 时,不一定推出不等式在 R 上恒成立,故所求的必要不充分条件可以是 m0.4条件p:1xa.若p是q的充分不必要条件,则a的取值范围是_【答案】(,1)【解析】p:x1,若p是q的充分不必要条件,则pq,但q/p,

4、即p对应集合是q对应集合的真子集,所以a1,q:x21;(3)p:x,y不全为0,q:xy0.充分条件、必要条件、充要条件的判断【解题探究】条件关系的判断,利用定义法、集合法、等价命题法【解析】(1)pq,而 q/p,p 是 q 的充分不必要条件(2)p 对应的集合为 Ax|x1,q 对应的集合为 Bx|x1,A B,p 是 q 的充分不必要条件(3)p:x0 且 y0;q:xy0.pq,而q/p,pq 且 p/q.p 是 q 的必要不充分条件充分、必要条件的判断方法(1)利用定义判断:直接判断“若p,则q”“若q,则p”的真假(2)从集合的角度判断:若AB,则“xA”是“xB”的充分条件或“

5、xB”是“xA”的必要条件;若AB,则“xA”是“xB”的充要条件(3)利用等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假1指出下列各题中,p是q的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分也不必要条件)(1)在ABC中,p:AB,q:BCAC;(2)对于实数x,y,p:xy6,q:x2或y4;(3)在ABC中,p:sin Asin B,q:tan Atan B;(4)已知x,yR,p:(x1)2(y2)20,q:(x1)(y2)0.【解析】(1)在ABC 中,显然有 ABBCAC,所以 p是 q 的充要条件(2)因为 x2 且 y4xy6,即qp,

6、但p/q,所以 p 是 q 的充分不必要条件(3)取 A120,B30,p/q,又取 A30,B120,q/p,所以 p 是 q 的既不充分也不必要条件(4)因为 p:A(1,2),q:B(x,y)|x1 或 y2,A B,所以 p 是 q 的充分不必要条件【例2】已知p:x28x200,q:x22x1m20(m0)若q是p的充分不必要条件,求实数m的取值范围【解题探究】利用条件关系的性质解决问题充分、必要条件的应用【解析】由 x28x200,得2x10.由 x22x1m20,得 1mx1m(m0)p:Ax|2x10,q:Bx|1mx1m(m0)q 是 p 的充分不必要条件,B A.m0,1m

7、10,1m2,解得 03,q:1x24x50,则 p 是 q 的什么条件?【解析】记 Ax|5x2|3,Bx1x24x50,则 Axx1或x1 或 x1”是“不等式ax22x10恒成立”的充要条件证明:当 a0 时,2x10 不恒成立当 a0 时,ax22x10 恒成立a0,44a1.所以“a1”是“不等式 ax22x10 恒成立”的充要条件寻找充要条件出错【示例】已知关于x的方程x2mx2m30的两根均大于1,求实数m的取值范围【错解】因为 x2mx2m30 的根都大于 1,所以得x1x22,x1x21,即m2,2m31,解得 m2,即 m 的取值范围为m|m2【错因分析】容易忽视条件“0”

8、;将两根都大于1 的充要条件误认为是x1x22,x1x21.实际上,x1x22,x1x21是x11,x21的必要不充分条件【正解】设方程 x2mx2m30 的两根为 x1,x2.由题意知0,x11,x210,x11x210,x11x210.【警示】熟练掌握相关的数学知识和逻辑推理方法是正确求解充分条件、必要条件的基础和关键所以有0,x1x22,x1x2x1x210,即m242m30,m2,2m3m10.所以 m6.所以 m 的取值范围为m|m61四种方法判定充分、必要条件,在不易判断p是q的充分条件(即pq)时,可以转向判断qp;证明p是q的必要条件(即qp),可以证明pq.2求问题的充要条件

9、(等价转化)3证明p是q的充要条件,要证明充分性、必要性两个方面1.(2020年湖北八校联考)若a,b,c,dR,则“adbc”是“a,b,c,d依次成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】当a1,b0,c3,d4时,adbc,但此时a,b,c,d不成等差数列;而当a,b,c,d依次成等差数列时,由等差数列的性质知adbc.所以“adbc”是“a,b,c,d依次成等差数列”的必要不充分条件.故选B.2在ABC中,角A,B,C所对应的边分别为a,b,c,则“ab”是“sin Asin B”的()A充分不必要条件B必要不充分条件C

10、充要条件D既不充分也不必要条件【答案】C【解析】在ABC中,由正弦定理可知absin AsinB故选C3.(多选题)下列说法不正确的是()A.“x1”是“x0”的必要条件B.已知向量 m,n,则“mn”是“mn”的充分条件C.“a4b4”是“ab”的必要条件D.在ABC 中,“ab”不是“AB”的充分条件【答案】BCD【解析】A 中,当 x0 时,有 x1,所以 A 正确;B 中,当 mn 时,mn 不一定成立,所以 B 不正确;C 中,当 ab时,a4b4 不一定成立,所以 C 不正确;D 中,当 ab 时,有AB,所以“ab”是“AB”的充分条件,所以 D 不正确.故选 BCD.4(2019 年山西运城期末)已知“1k0,解得1k1,所以1m1,即实数 m 的取值范围是(1,1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3