1、2.4等比数列(2)导学案 【学习目标】 1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.【重点难点】重点:等比数列的定义和通项公式;难点:在具体的问题情境中,发现数列的等比关系,并能灵活运用这些公式解决相应的实际问题。【知识链接】(预习教材P51 P54,找出疑惑之处)复习1:等比数列的通项公式 = . 公比q满足的条件是 复习2:等差数列有何性质?【学习过程】 学习探究问题1:如果在a与b中间插入一个数G,使a,G,b成等比数列,则 新知1:等比中项定义如果在a与b中间插入一个数G,使a,G,b成等比数列,那
2、么称这个数G称为a与b的等比中项. 即G= (a,b同号).试试:数4和6的等比中项是 .问题2:1.在等比数列中,是否成立呢?2.是否成立?你据此能得到什么结论?3.是否成立?你又能得到什么结论?新知2:等比数列的性质 在等比数列中,若m+n=p+q,则.试试:在等比数列,已知,那么 . 典型例题例1已知是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例自选1自选2是否等比是变式:项数相同等比数列与,数列也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列中,已知,且,公比为整数,求.变式:在等比数列中,已知,则 .
3、动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5 B. 三边之比为1:3C. 较小锐角的正弦为 D. 较大锐角的正弦为练2. 在7和56之间插入、,使7、56成等比数列,若插入、,使7、56成等差数列,求的值.【学习反思】 学习小结1. 等比中项定义;2. 等比数列的性质. 知识拓展公比为q的等比数列具有如下基本性质:1. 数列,等,也为等比数列,公比分别为. 若数列为等比数列,则,也等比.2. 若,则. 当m=1时,便得到等比数列的通项公式.3. 若,则.4. 若各项为正,c0,则是一个以为首项,为公差的等差数列. 若是以d为公差的等差数列,则是以为首项,为
4、公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列. 【基础达标】 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在为等比数列中,那么( ). A. 4 B. 4 C. 2 D. 82. 若9,a1,a2,1四个实数成等差数列,9,b1, b2,b3,1五个实数成等比数列,则b2(a2a1)( ).A8 B8 C8 D3. 若正数a,b,c依次成公比大于1的等比数列,则当x1时,( )A.依次成等差数列 B.各项的倒数依次成等差数列C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列中,则log3+ log3+ log3 . 【拓展提升】1. 在为等比数列中,求的值.2. 已知等差数列的公差d0,且, 成等比数列,求.高考资源网版权所有!投稿可联系QQ:1084591801