1、课后分层训练(四十一)物质的聚集状态与物质性质A组专项基础达标(建议用时:25分钟)1(1)SiC的晶体结构与晶体硅的相似,其中C原子的杂化方式为_,微粒间存在的作用力是_。SiC晶体和晶体Si的熔、沸点高低顺序是_。 (2)氧化物MO的电子总数与SiC的相等,则M为_(填元素符号)。MO是优良的耐高温材料,其晶体结构与NaCl晶体相似。MO的熔点比CaO的高,其原因是_。 (3)C、Si为同一主族的元素,CO2和SiO2的化学式相似,但结构和性质有很大的不同。CO2中C与O原子间形成键和键,SiO2中Si与O原子间不形成上述键。从原子半径大小的角度分析,为何C、O原子间能形成上述键,而Si、
2、O原子间不能形成上述键:_,SiO2属于_晶体,CO2属于_晶体,所以熔点CO2_SiO2(填“”“”或“”)。(4)金刚石、晶体硅、二氧化硅、MgO、CO2、Mg六种晶体的构成微粒分别是_,熔化时克服的微粒间的作用力分别是_。解析(1)晶体硅中一个硅原子周围与4个硅原子相连,呈正四面体结构,所以C原子杂化方式是sp3,因为SiC的键长小于SiSi,所以熔点碳化硅晶体硅。(2)SiC电子总数是20个,则该氧化物为MgO;晶格能与所构成离子所带电荷成正比,与离子半径成反比,MgO与CaO的离子电荷数相同,Mg2半径比Ca2小,MgO晶格能大,熔点高。(3)Si的原子半径较大,Si、O原子间距离较
3、大,pp轨道肩并肩重叠程度较小,不能形成上述稳定的键,SiO2为原子晶体,CO2为分子晶体,所以熔点SiO2CO2。(4)金刚石、晶体硅、二氧化硅均为原子晶体,构成微粒为原子,熔化时破坏共价键;Mg为金属晶体,由金属阳离子和自由电子构成,熔化时克服金属键;CO2为分子晶体,由分子构成,CO2分子间以分子间作用力结合;MgO为离子晶体,由Mg2和O2构成,熔化时破坏离子键。答案(1)sp3共价键SiCSi(2)MgMg2半径比Ca2小,MgO晶格能大(3)Si的原子半径较大,Si、O原子间距离较大,pp轨道肩并肩重叠程度较小,不能形成上述稳定的键原子分子(4)原子、原子、原子、阴阳离子、分子、金
4、属阳离子与自由电子共价键、共价键、共价键、离子键、分子间作用力、金属键2(1)科学家把C60和K掺杂在一起制造了一种富勒烯与钾的化合物,该物质在低温时是一种超导体,其晶胞如图所示,该物质中K原子和C60分子的个数比为_。继C60后,科学家又合成了Si60、N60。请解释如下现象:熔点Si60N60C60,而破坏分子所需要的能量N60C60Si60,其原因是_。(2)铜晶体为面心立方最密堆积,铜的原子半径为127.8 pm,列式计算晶体铜的密度_。(3)A是周期表中电负性最大的元素,A与钙可组成离子化合物,其晶胞结构如图所示,该化合物的电子式是_。已知该化合物晶胞1/8的体积为2.01023 c
5、m3,求该离子化合物的密度,请列式并计算(结果保留一位小数):_。解析(1)K处于晶胞表面:126,C60处于晶胞顶点和体心:812。故K原子和C60分子的个数比为:6231。熔点与分子间作用力大小有关,而破坏分子则是破坏分子内的共价键。(2)晶胞边长2r(Cu),晶胞含有Cu为4,M(Cu)64,9.0 (gcm3)。(3)A为F,与Ca形成CaF2,电子式为,3.2(gcm3)。答案(1)31结构相似的分子晶体的相对分子质量越大,分子间作用力(或范德华力)越强,熔化所需的能量越多,故熔点:Si60N60C60;而破坏分子需断开化学键,元素电负性越强其形成的化学键越稳定,断键时所需能量越多,
6、故破坏分子需要的能量大小顺序为N60C60Si60(2)9.0(gcm3)3.2 gcm33(2017甘肃重点中学联考)(1)三聚氰胺()中六元环结构与苯环类似,它与硝基苯的相对分子质量之差为3,三聚氰胺的熔点为354 ,硝基苯的熔点是5.7 。 【导学号:99682413】三聚氰胺中,环上与环外的氮原子杂化轨道类型分别为_。导致三聚氰胺与硝基苯熔点相差很大的根本原因是_。(2)一定条件下,碳、氮两种元素可形成一种化合物,该化合物可作耐磨材料,其熔点_(填“高于”、“低于”或“无法判断”)金刚石的熔点。(3)铁镁合金是目前已发现的储氢密度最高的储氢材料之一,其晶胞结构如图所示。则铁镁合金的化学
7、式为_,若该晶胞的参数为d nm,则该合金的密度为_(不必化简,用NA表示阿伏加德罗常数)。解析(1)三聚氰胺中环上、环外氮原子分别形成了2个键、3个键,均还有一个孤对电子,故价层电子对数分别为3、4,杂化轨道类型分别为sp2、sp3。三聚氰胺中存在NH键,分子间能形成氢键,导致熔点升高,硝基苯分子间不能形成氢键,故熔点较低。(2)因氮的原子半径小于碳的原子半径,故键能CNCC,因而金刚石的熔点较低。(3)依据均摊规则,晶胞中共有4个铁原子,8个镁原子,故化学式为Mg2Fe,一个晶胞中含有4个“Mg2Fe”,其质量为104 g g,1 nm107 cm,体积为1021d3 cm3,由此可求出其
8、密度。答案(1)sp2、sp3三聚氰胺分子间能形成氢键,但硝基苯分子间不能形成氢键(2)高于(3)Mg2Fe gcm3(或其他合理答案)4现有几组物质的熔点()数据: 【导学号:99682414】A组B组C组D组金刚石:3 550 Li:181 HF:83 NaCl:801 硅晶体:1 410 Na:98 HCl:115 KCl:776 硼晶体:2 300 K:64 HBr:89 RbCl:718 二氧化硅:1 723 Rb:39 HI:51 CsCl:645 据此回答下列问题:(1)A组属于_晶体,其熔化时克服的微粒间的作用力是_。(2)B组晶体共同的物理性质是_(填序号)。有金属光泽导电性
9、导热性延展性(3)C组中HF熔点反常是由于_。(4)D组晶体可能具有的性质是_(填序号)。硬度小水溶液能导电固体能导电熔融状态能导电(5)D组晶体的熔点由高到低的顺序为NaClKClRbClCsCl,其原因为_。解析(1)A组熔点很高,为原子晶体,是由原子通过共价键形成的。(2)B组为金属晶体,具有四条共性。(3)HF中含有分子间氢键,故其熔点反常。(4)D组属于离子晶体,具有两条性质。(5)D组属于离子晶体,其熔点与晶格能有关。答案(1)原子共价键(2)(3)HF分子间能形成氢键,其熔化时需要消耗的能量更多(只要答出HF分子间能形成氢键即可)(4)(5)D组晶体都为离子晶体,r(Na)r(K
10、)r(Rb)OC(3)N2H4C2H4.(1)sp2三角锥形(2)BBr3PBr33H2BP6HBr(3)6(1)PrO2的晶体结构与CaF2相似,晶胞中Pr原子位于面心和顶点,则PrO2的晶胞中有_个氧原子。Ce(铈)单质为面心立方晶体,其晶胞参数为a516 pm,晶胞中Ce原子的配位数为_,列式表示Ce单质的密度_gcm3(列式即可)。(2)已知C的原子核外电子排布为Ar3d104sx,有1、2两种常见化合价。C晶体的堆积方式如图所示,设C原子半径为r cm,阿伏加德罗常数用NA表示,则晶胞中C原子的配位数为_,C晶体的密度为_gcm3(要求写表达式,可以不化简)。(3)FeO晶胞结构如图
11、甲所示,FeO晶体中Fe2配位数为_。铁有、三种同素异形体(如图乙),则晶胞原子堆积名称为_。若Fe晶胞边长为a,Fe晶胞边长为b,则两种晶体密度比为_。图甲图乙解析(1)晶胞中Pr原子位于面心和顶点,通过均摊法知晶胞中含4个Pr原子,再结合PrO2的化学式可知,此晶胞中应有8个氧原子;Ce(铈)单质为面心立方晶体,以晶胞顶点的铈原子为例,与之距离最近的铈原子分布在经过该顶点的所有立方体的面心上,这样的面有12个,晶胞中铈原子位于顶点和面心,数目为81/861/24,该晶胞的体积为a3,该晶胞的质量为m4M/NA,根据可知,密度为 gcm3 gcm3。(2)铜是面心立方最密堆积,则根据晶胞结构可知铜原子的配位数为12。晶胞中铜原子的个数864。铜原子半径为r cm,则面心对角线为4r cm,所以立方体的边长是2r cm,则NA4,解得。(3)根据FeO的晶胞结构,可知Fe2配位数为6(上、下、左、右、前、后)。晶胞原子堆积名称为体心立方密堆积。根据晶胞结构可知,Fe晶胞、Fe晶胞中含有的铁原子分别为1个和4个,所以有:(Fe),(Fe),Fe和Fe两种晶体的密度比为b34a3。答案(1)812(2)12(3)6体心立方密堆积b34a3