1、 3.2.1几类不同增长的函数模型(学案)一、学习目标1理解直线上升、指数爆炸、对数增长的含义(重点)2区分指数函数、对数函数以及幂函数增长速度的差异(易混点)3会选择适当的函数模型分析和解决一些实际问题(难点)二、自主学习 教材整理几类不同增长的函数模型阅读教材P98P101,完成下列问题1三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性增函数增函数增函数图象的变化随x的增大逐渐与y轴平行随x的增大逐渐与x轴平行随n值的不同而不同2.三种函数增长速度的比较(1)在区间(0,)上,函数yax(a1),ylogax(a1)和yxn(n0)都是增函数,
2、但增长进度不同,且不在同一个“档次”上(2)随着x的增大,yax(a1)的增长速度越来越快,会超过并远远大于yxn(n0)的增长速度,而ylogax(a1)的增长速度越来越慢(3)存在一个x0,当xx0时,有axxnlogax.三、合作探究 例1. (1)下列函数中,增长速度最快的是() Ay2 016x Byx2 016 Cylog2 016x Dy2 016x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321 02432 7681.051063.361071.07109y32102030405060
3、y424.3225.3225.9076.3226.6446.907则关于x呈指数型函数变化的变量是_【自主解答】(1)比较幂函数、指数函数与对数函数可知,指数函数增长速度最快,故选A.(2)以爆炸式增长的变量呈指数函数变化从表格中可以看出,四个变量y1,y2,y3,y4均是从2 变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化故填y2.【答案】(1)A(2)y2归纳总结:1指数函数模型yax(a1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,形象地称为“指数爆炸”2对数函数模型ylogax(a1)的增长特
4、点是随着自变量的增大,函数值增大的速度越来越慢3幂函数模型yxn(n0)的增长速度介于指数增长和对数增长之间例2. 函数f(x)2x和g(x)x3的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f(6),g(6),f(2 016),g(2 016)的大小【自主解答】(1)C1对应的函数为g(x)x3,C2对应的函数为f(x)2x.(2)f(1)g(1),f(2)g(2),f(9)g(9),f(10)g(10),1x12,9x210,x16x2,2 016x2.从图象上可以看出,当x1xx2
5、时,f(x)g(x),f(6)g(6);当xx2时,f(x)g(x),f(2 016)g(2 016)又g(2 016)g(6),f(2 016)g(2 016)g(6)f(6) 归纳总结:根据函数图象判断增长函数模型时,通常是根据函数图象上升的快慢来判断,即随着自变量的增大,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数,中间的是幂函数.例3. 某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.58千美元的地区销售该公司A饮料的情况调查时发现:该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减(1)下列几个模拟函数中:yax2bx;ykxb;ylogaxb;ya
6、xb(x表示人均GDP,单位:千美元,y表示年人均A饮料的销售量,单位:L)用哪个模拟函数来描述人均A饮料销售量与地区的人均GDP关系更合适?说明理由;(2)若人均GDP为1千美元时,年人均A饮料的销售量为2 L,人均GDP为4千美元时,年人均A饮料的销售量为5 L,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均A饮料的销售量最多是多少?【自主解答】(1)用来模拟比较合适因为该饮料在人均GDP处于中等的地区销售量最多,然后向两边递减而,表示的函数在区间上是单调函数,所以,都不合适,故用来模拟比较合适(2)因为人均GDP为1千美元时,年人均A饮料的销量为2升;人均GDP为4千美元时,
7、年人均A饮料的销量为5升,把x1,y2;x4,y5代入到yax2bx,得解得a,b,所以函数解析式为yx2x.(x0.5,8)yx2x2,当x时,年人均A饮料的销售量最多是 L.归纳总结:不同的函数模型能刻画现实世界中不同的变化规律1线性函数增长模型适合于描述增长速度不变的变化规律2指数函数增长模型适合于描述增长速度急剧的变化规律3对数函数增长模型适合于描述增长速度平缓的变化规律4幂函数增长模型适合于描述增长速度一般的变化规律四、学以致用 1下列函数中随x的增大而增长速度最快的是()Ayex By100ln x Cyx100 Dy1002x【答案】A2函数f(x)lg x,g(x)0.3x1的
8、图象如图322所示(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较)图322【解】(1)C1对应的函数为g(x)0.3x1,C2对应的函数为f(x)lg x.(2)当xf(x);当x1xg(x);当xx2时,g(x)f(x);当xx1或xx2时,f(x)g(x)3某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100t,120t,130t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y(t)与月序数x之间的关系对此模拟函数可选用二次函数yf(x)ax2bx
9、c(a,b,c均为待定系数,xN*)或函数yg(x)pqxr(p,q,r均为待定系数,xN*),现在已知该厂这种新产品在第四个月的月产量为137t,则选用这两个函数中的哪一个作为模拟函数较好?【解】根据题意可列方程组:解得所以yf(x)5x235x70.同理yg(x)800.5x140.再将x4分别代入与式得:f(4)54235470130(t),g(4)800.54140135(t)与f(4)相比,g(4)在数值上更为接近第四个月的实际月产量,所以式作为模拟函数比式更好,故选用函数yg(x)pqxr作为模拟函数较好.五、自主小测 1如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函
10、数模型() x45678910y15171921232527A.一次函数模型 B二次函数模型C指数函数模型 D对数函数模型2下列函数中,随x的增大,增长速度最快的是()Ay1 Byx Cy3x Dylog3x3某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用()A一次函数 B二次函数C指数型函数 D对数型函数4生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应_;B对应_;C对应_;D对应_. 5函数f(x)1.1
11、x,g(x)ln x1,h(x)x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点) 参考答案1.【解析】自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型故选A. 【答案】A2.【解析】结合函数y1,yx,y3x及ylog3x的图象可知,随着x的增大,增长速度最快的是y3x. 【答案】C3.【解析】结合“直线上升,对数增长,指数爆炸”可知,对数型函数符合题设条件,故选D.【答案】D4.【解析】A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快慢快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应 【答案】(4)(1)(3)(2)5.【解】由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)1.1x,曲线C2对应的函数是h(x)x,曲线C3对应的函数是g(x)ln x1.由题图知,当xh(x)g(x);当1xg(x)h(x);当exf(x)h(x);当axh(x)f(x);当bxg(x)f(x);当cxf(x)g(x);当xd时,f(x)h(x)g(x)