收藏 分享(赏)

人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc

上传人:高**** 文档编号:127127 上传时间:2024-05-25 格式:DOC 页数:8 大小:103.50KB
下载 相关 举报
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第1页
第1页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第2页
第2页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第3页
第3页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第4页
第4页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第5页
第5页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第6页
第6页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第7页
第7页 / 共8页
人教A版高中数学 高三一轮 第九章 计数原理与概率、随机变量及其分布 9-4 随机事件的概率 《教案》 .doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 高三 一轮复习 第九章 计数原理与概率、随机变量及其分布9.4 随机事件的概率【教学目标】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2.了解两个互斥事件的概率加法公式.【重点难点】 1.教学重点:了解概率的意义及两个互斥事件的概率加法公式;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】教学流程教师活动学生活动设计意图环节二:考纲传真: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2.了解两个互斥事件的概率加法公式.真题再现;1.(20

2、14全国,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.解析由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P,故选D.答案D2.(2013大纲版,20)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率.(2)X表示前4局中乙当裁判的次数,求X的数学期望

3、.解(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”.则AA1 A2.P(A)P(A1A2)P(A1)P(A2)知识梳理:知识点1概率和频率1在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率2对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A)知识点2事件的关系与运算定义符号表示包含关系若事件A发生,则事件B一定发生,这时称事件B包含事件A(或

4、称事件A包含于事件B)BA(或AB)相等关系若BA,且AB,那么称事件A与事件B相等AB并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)AB(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,那么称事件A与事件B互斥AB对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件AB且AB知识点3概率的几个基本性质1概率的取值范围:0P(A)1.2必然事件的概率P(E)1.3不可能事件的概率P(F)0.4互斥事件概率

5、的加法公式(1)若事件A与事件B互斥,则P(AB)P(A)P(B);(2)若事件B与事件A互为对立事件,则P(A)1P(B)1必会结论;(1)从集合的角度理解互斥事件和对立事件几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集(2)概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1A2An)P(A1)P(A2)P(An)2必知关系;互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者

6、之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对应事件考点分项突破考点一:随机事件的关系1.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:至少有1个白球与至少有1个黄球;至少有1个黄球与都是黄球;恰有1个白球与恰有1个黄球;恰有1个白球与都是黄球其中互斥而不对立的事件共有()A0组 B1组 C2组 D3组【解析】中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,中的两个事件不是互斥事件中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄

7、球,因此两个事件是同一事件中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.【答案】B归纳:1准确把握互斥事件与对立事件的概念(1)互斥事件是不可能同时发生的事件,但可以同时不发生(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生2判别互斥、对立事件的方法判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件考点二: 随机事件的频率与概率1.(2014陕西高考)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔

8、付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆) 500 130 100 150 120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率【解】(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以

9、其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24.跟踪训练:1.(2015北京高考)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估

10、计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【解】(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为0.2,顾客同时购买甲和丙的概率可以估计为0.6,顾客同时购买甲和丁的概

11、率可以估计为0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大归纳:1概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值2随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率考点三: 互斥事件、对立事件的概率1.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B

12、、C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率【解】(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为M,则MABC.A,B,C两两互斥,P(M)P(ABC)P(A)P(B)P(C).故1张奖券的中奖概率约为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1.故1张奖券不中特等奖且不中一等奖的概率为.跟踪训练:1从一箱产品中随机地抽取一件,设事件A抽到一等品,

13、事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A0.7 B0.65 C0.35 D0.3【解析】设事件D抽到的不是一等品,则事件D与事件A是对立事件,从而P(D)1P(A)10.650.35,故选C.【答案】C2在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件【解析】A中,P(AB)0.4,P(AB)P(C)

14、0.71,因此,AB与C不是对立事件,故A错;B中,P(BC)0.5,P(BC)P(D)0.81,因此BC与D不是对立事件,故B错;C中,P(AC)0.5,P(BD)0.5,又P(AC)P(BD)1,因此AC与BD是对立事件,故C错;D中,P(BCD)0.8,P(A)P(BCD)1,因此A与BCD是互斥事件,也是对立事件,故选D.【答案】D归纳:求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法:(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的

15、分类较少,可考虑利用对立事件的概率公式,即“正难则反”它常用来求“至少”或“至多”型事件的概率。学生通过对高考真题的解决,发现自己对知识的掌握情况。 学生通过对高考真题的解决,感受高考题的考察视角。 教师引导学生及时总结,以帮助学生形成完整的认知结构。引导学生通过对基础知识的逐点扫描,来澄清概念,加强理解。从而为后面的练习奠定基础.在解题中注意引导学生自主分析和解决问题,教师及时点拨从而提高学生的解题能力和兴教师引导学生及时总结,以帮助学生形成完整的认知结构。 通过对考纲的解读和分析。让学生明确考试要求,做到有的放矢由常见问题的解决和总结,使学生形成解题模块,提高模式识别能力和教师引导学生及时总结,以帮助学生形成完整的认知结构引导学生对所学的知识进行小结,由利于学生对已有的知识结构进行编码处理,加强理解记忆,提高解题技能。环节三:课堂小结:1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别2.了解两个互斥事件的概率加法公式.学生回顾,总结.引导学生对学习过程进行反思,为在今后的学习中,进行有效调控打下良好的基础。环节四:课后作业:学生版练与测学生通过作业进行课外反思,通过思考发散巩固所学的知识。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3