1、第十二节导数与函数的极值、最值考纲传真1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数不超过三次).3.会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)1函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点xa处的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0,而且在点xa附近的左侧f(x)0,右侧f(x)0,则点a叫做函数的极小值点,f(a)叫做函数的极小值(2)函数的极大值与极大值点若函数f(x)在点xb处的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0,而且在点xb附近的左侧f(x)
2、0,右侧f(x)0,则点b叫做函数的极大值点,f(b)叫做函数的极大值2函数的最值与导数的关系(1)函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值(2)求yf(x)在a,b上的最大(小)值的步骤求函数yf(x)在(a,b)内的极值;将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值对于可导函数f(x),f(x0)0是函数f(x)在xx0处有极值的必要不充分条件基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)函数的极大值一定比极小值大()(2
3、)对可导函数f(x),f(x0)0是x0为极值点的充要条件()(3)函数的最大值不一定是极大值,函数的最小值也不一定是极小值()(4)x0是函数f(x)x3的极值点()答案(1)(2)(3)(4)2(教材改编)函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内极小值点的个数为()A1B2C3D4A导函数f(x)的图象与x轴的交点中,左侧图象在x轴下方,右侧图象在x轴上方的只有一个,所以f(x)在区间(a,b)内有一个极小值点3设函数f(x)ln x,则()Ax为f(x)的极大值点Bx为f(x)的极小值点Cx2为f(x)的极大值
4、点Dx2为f(x)的极小值点D函数f(x)的定义域为(0,),f(x),令f(x)0得x2,又0x2时,f(x)0,x2时,f(x)0.因此x2为f(x)的极小值点,故选D.4已知a为函数f(x)x312x的极小值点,则a()A4 B2 C4 D2D由题意得f(x)3x212,令f(x)0得x2,当x2时,f(x)0;当2x2时,f(x)0恒成立,得x2或x1时,f(x)0,且x0;2x1时,f(x)1时,f(x)0.所以x1是函数f(x)的极小值点所以函数f(x)的极小值为f(1)1.故选A.2(2015全国卷)已知函数f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围解(1)f(x)的定义域为(0,),f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增若a0,则当x时,f(x)0;当x时,f(x)0时,f(x)在x处取得最大值,最大值为flnaln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)1时,g(a)0.因此,a的取值范围是(0,1)