收藏 分享(赏)

《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc

上传人:高**** 文档编号:123720 上传时间:2024-05-25 格式:DOC 页数:13 大小:747KB
下载 相关 举报
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第1页
第1页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第2页
第2页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第3页
第3页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第4页
第4页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第5页
第5页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第6页
第6页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第7页
第7页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第8页
第8页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第9页
第9页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第10页
第10页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第11页
第11页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第12页
第12页 / 共13页
《世纪金榜》2016届高三文科数学总复习课时提升作业(三十八) 7.1空间几何体的结构及其三视图和直观图.doc_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
资源描述

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(三十八)空间几何体的结构及其三视图和直观图(25分钟60分)一、选择题(每小题5分,共25分)1.(2015兰州模拟)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【解析】选D.如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【加固训练】(2015佛山模拟)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是图中的()【解析】选B.截去的平面在俯视图中看不到,故用虚线,因此选B.2.(2015淄博

2、模拟)某三棱锥的正视图与俯视图如图所示,则其侧视图的面积为()A.2B.3C.4D.6【解析】选A.由三棱锥的特点知侧视图为直角三角形,根据正视图和俯视图知,侧视图的两直角边长分别为2,2,所以侧视图的面积为22=2.3.(2015安庆模拟)某几何体的正视图和侧视图均为如图1所示的图形,则在图2的四个图中可以作为该几何体的俯视图的是()A.(1)(3)B.(1)(4)C.(2)(4)D.(1)(2)(3)(4)【解析】选A.由几何体的正视图与侧视图可得出,此几何体上部一定是一个球,下部可以是一个正方体,或是一个圆柱体,故(1)(3)一定正确,第二个几何体不符合要求,这是因为球的投影不在正中,第

3、四个不对的原因与第二个相同,综上,A选项符合要求.故选A.【加固训练】(2015广州模拟)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()【解析】选D.由几何体的正视图和侧视图均为题干图中左图.结合四个选项中的俯视图知,若为D,则正视图应为,故D不可能,所以选D.4.(2015绍兴模拟)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.B.C.D.【解析】选A.的三个视图都是边长为1的正方形;的俯视图是圆,正视图、侧视图都是边长为1的正方形;的俯视图是一个圆,正视图、侧视图是相同的等腰三角形;的俯视图是边长为1的正方形,正视图、侧视图是

4、相同的矩形.【方法技巧】由直观图确定三视图的技巧(1)将几何体放在自己的前面,从正面、左面、上面观察几何体,得到三视图.(2)画三视图时,看得到的轮廓线画成实线,看不到的轮廓线要画成虚线.5.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:水的部分始终呈棱柱状;水面四边形EFGH的面积不改变;棱A1D1始终与水面EFGH平行;当EAA1时,AE+BF是定值.其中正确说法是()A.B.C.D.【解析】选D.显然水的部分呈三棱柱或四棱柱状,故正确;容器倾斜度越大,水面四边形EFGH的面积越大,故

5、不正确;显然棱A1D1始终与水面EFGH平行,故正确;由于水的体积不变,四棱柱ABFE-DCGH的高不变,所以梯形ABFE的面积不变,所以AE+BF是定值,故正确.所以四个命题中正确.二、填空题(每小题5分,共15分)6.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体的编号).三棱锥;四棱锥;三棱柱;四棱柱;圆锥;圆柱.【解析】四棱柱与圆柱的正视图不可能为三角形,三棱锥、四棱锥、三棱柱、圆锥的正视图都有可能是三角形.答案:7.等腰梯形ABCD,上底CD=1,腰AD=CB=,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图ABCD的面积为.【

6、解析】如图所示:因为OE=1,所以OE=,EF=,则直观图ABCD的面积为S=(1+3)=.答案:8.(2015武汉模拟)某四棱锥的三视图如图所示,则最长的一条侧棱的长度是.【解析】根据三视图可知原图为如图,最长棱为AC,所以AE=2,EB=2,ED=3,DC=4,所以EC=5,所以AC=.答案:三、解答题(每小题10分,共20分)9.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体.(2)画出其侧视图,并求该平面图形(侧视图)的面积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的侧视图如图:其中AB=AC,ADBC,且BC的长是俯视图正

7、六边形对边间的距离,即BC=a,AD是正六棱锥的高,则AD=a,所以该平面图形(侧视图)的面积为S=aa=a2.【加固训练】已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该三棱锥的侧视图和直观图.(2)求出侧视图的面积.【解析】(1)如图.(2)侧视图中VA=2.则SVBC=22=6.10.(2014辽宁高考改编)某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.【解题提示】根据俯视图可得这是一个切割后的几何体,再结合另外两个视图,得到几何体.【解析】(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.(2)直观图如图所示.(20分钟40分)1

8、.(5分)一梯形的直观图是一个如图所示的等腰梯形,且该梯形的面积为,则原梯形的面积为()A.2B.C.2D.4【解析】选D.直观图为等腰梯形,若上底设为x,高设为y,则S直观图=y(x+2y+x)=,而原梯形为直角梯形,其面积为S=2y(x+2y+x)=2=4.2.(5分)(2015长沙模拟)如图,三棱锥V-ABC的底面ABC为正三角形,侧面VAC与底面ABC垂直,且VA=VC,以平面VAC为正视图的投影面,其正视图的面积为,则其侧视图的面积为()A.B.C.D.【解题提示】关键由题设条件确定侧视图的形状.【解析】选B.取AC中点H,连接VH,BH,在VAC中,VA=VC,所以VHAC,因为平

9、面VAC平面ABC且其交线为AC,所以VH平面ABC,因为ABC是等边三角形,则BHAC,所以AC平面VHB,即侧视图为VHB,设AB=a,VH=h,根据等体积法得SABCh=SVHBAC,即a2h=SVHBa,所以SVHB=ah,又正视图面积为S=ah=,所以SVHB=.【加固训练】(2014成都模拟)三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图所示)的面积为8,则侧视图的面积为()A.8B.4C.4D.【解析】选C.由正视图面积为8知,三棱柱的侧棱长为4,侧视图是一个矩形,它的一边长为4,另一边长是底面正三角形的高,所以侧视图的面积为4=4.3.(5分)(2015杭

10、州模拟)多面体MN-ABCD的底面ABCD为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长为()A.B.C.D.2【解析】选C.在直观图中,过M作MH垂直于AB,垂足为H,则在直角三角形AHM中,AH=1,MH=,所以AM=.4.(12分)(2015石家庄模拟)如图的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图.(2)按照给出的尺寸,求该多面体的体积.【解析】(1)如图.(2)所求多面体体积V=V长方体-V正三棱锥=446-

11、2=(cm3).5.(13分)(能力挑战题)某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.【解题提示】可将该几何体放在长方体中,且已知长为的棱为长方体的体对角线来解决.【解析】如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A1C=,则它的正视图投影长为A1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2()2,即a2+b2=8,又,当且仅当“a=b=2”时等号成立.所以a+b4,即a+b的最大值为4.关闭Word文档返回原板块

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3