收藏 分享(赏)

《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc

上传人:高**** 文档编号:118817 上传时间:2024-05-25 格式:DOC 页数:10 大小:249.50KB
下载 相关 举报
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第1页
第1页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第2页
第2页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第3页
第3页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第4页
第4页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第5页
第5页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第6页
第6页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第7页
第7页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第8页
第8页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第9页
第9页 / 共10页
《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1_1.2.2几个常用函数的导数基本初等函数的导数公式及导数的运算法则一 WORD版含解析.doc_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网( ),您身边的高考专家1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)明目标、知重点1能根据定义求函数yc,yx,yx2,y,y的导数 2能利用给出的基本初等函数的导数公式求简单函数的导数1几个常用函数的导数原函数导函数f(x)cf(x)0f(x)xf(x)1f(x)x2f(x)2xf(x)f(x)f(x)f(x)2.基本初等函数的导数公式原函数导函数f(x)cf(x)0f(x)x(Q*)f(x)x1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)axf(x)axln_a(a0)f(x)exf(x)exf(x)log

2、axf(x)(a0且a1)f(x)ln xf(x)情境导学在前面,我们利用导数的定义能求出函数在某一点处的导数,那么能不能利用导数的定义求出比较简单的函数及基本函数的导数呢?这就是本节要研究的问题探究点一几个常用函数的导数思考1怎样利用定义求函数yf(x)的导数?答(1)计算,并化简;(2)观察当x趋近于0时,趋近于哪个定值;(3)趋近于的定值就是函数yf(x)的导数思考2利用定义求下列常用函数的导数:yc,yx,yx2,y,y.答y0,y1,y2x,y (其它类同),y.思考3导数的几何意义是曲线在某点处的切线的斜率物理意义是运动物体在某一时刻的瞬时速度(1)函数yf(x)c(常数)的导数的

3、物理意义是什么?(2)函数yf(x)x的导数的物理意义呢?答(1)若yc表示路程关于时间的函数,则y0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态(2)若yx表示路程关于时间的函数,则y1可以解释为某物体做瞬时速度为1的匀速运动思考4在同一平面直角坐标系中,画出函数y2x,y3x,y4x的图象,并根据导数定义,求它们的导数(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数ykx(k0)增(减)的快慢与什么有关?答函数y2x,y3x,y4x的图象如图所示,导数分别为y2,y3,y4.(1)从图象上看,函数y2x,y3x,y4x的

4、导数分别表示这三条直线的斜率(2)在这三个函数中,y4x增加得最快,y2x增加得最慢(3)函数ykx(k0)增加的快慢与k有关系,即与函数的导数有关系,k越大,函数增加得越快,k越小,函数增加得越慢函数ykx(k0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系,|k|越大,函数减少得越快,|k|越小,函数减少得越慢思考5画出函数y的图象根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程答函数y的图象如图所示,结合函数图象及其导数y发现,当x0时,随着x的增加,函数减少得越来越慢点(1,1)处切线的斜率就是导数y|x11,故斜率为1,过点(1,1)的切线方程为yx2.思考6

5、利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?答可以使用给出的导数公式进行求导,简化运算过程,降低运算难度探究点二基本初等函数的导数公式思考你能发现8个基本初等函数的导数公式之间的联系吗?答公式6是公式5的特例,公式8是公式7的特例例1求下列函数的导数:(1)ysin;(2)y5x;(3)y;(4)y;(5)ylog3x.解(1)y0;(2)y(5x)5xln 5;(3)y(x3)3x4;(4)y()(x)x;(5)y(log3x).反思与感悟对于教材中出现的8个基本初等函数的导数公式,要想在解题过程中应用自如,必须做到以下两点:一是正确理

6、解,如sin是常数,而常数的导数一定为零,就不会出现cos这样的错误结果二是准确记忆,灵活变形如根式、分式可转化为指数式,利用公式2求导跟踪训练1求下列函数的导数:(1)yx8;(2)y()x;(3)yx;(4)ylogx.解(1)y8x7;(2)y()xln ()xln 2;(3)yxx,yx;(4)y.例2判断下列计算是否正确求ycos x在x处的导数,过程如下:y|xsin .解错误应为ysin x,y|xsin .反思与感悟函数f(x)在点x0处的导数等于f(x)在点xx0处的函数值在求函数在某点处的导数时可以先利用导数公式求出导函数,再将x0代入导函数求解,不能先代入后求导跟踪训练2

7、求函数f(x)ln x在x1处的导数解f(x)(ln x),f(1)1,函数f(x)在x1处的导数为1.探究点三导数公式的综合应用按照基本初等函数的导数公式,我们可以解决两类问题:(1)可求基本初等函数图象在某一点P(x0,y0)处的切线方程(2)知切线斜率可求切点坐标例3已知直线l: 2xy40与抛物线yx2相交于A、B两点,O是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧AOB上求一点P,使ABP的面积最大解设P(x0,y0)为切点,过点P与AB平行的直线斜率k y2x0,k2x02,x01,y0 1.故可得P(1,1),切线方程为2xy10.由于直线l: 2xy40与抛物线yx2

8、相交于A、B两点,所以|AB|为定值,要使ABP的面积最大,只要P到AB的距离最大,故P(1,1)点即为所求弧上的点,使ABP的面积最大反思与感悟利用基本初等函数的求导公式,可求其图象在某一点P(x0,y0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算跟踪训练3点P是曲线yex上任意一点,求点P到直线yx的最小距离解根据题意设平行于直线yx的直线与曲线yex相切于点(x0,y0),该切点即为与yx距离最近的点,如图则在点(x0,y0)处的切线斜率为1,即y|xx01.y(ex)ex,

9、ex01,得x00,代入yex,得y01,即P(0,1)利用点到直线的距离公式得距离为.1给出下列结论:若y,则y;若y,则y;若y,则y2x3;若f(x)3x,则f(1)3.其中正确的个数是()A1 B2 C3 D4答案C解析yx3,则y3x4;yx,则yx;yx2,则y2x3;由f(x)3x,知f(x)3,f(1)3.正确2函数f(x),则f(3)等于()A. B0C. D.答案A解析f(x)(),f(3).3设正弦曲线ysin x上一点P,以点P为切点的切线为直线l,则直线l的倾斜角的范围是()A0,) B0,)C, D0,答案A解析(sin x)cos x,klcos x,1kl1,l

10、0,)4曲线yex在点(2,e2)处的切线与坐标轴所围三角形的面积为_答案e2解析y(ex)ex,ke2,曲线在点(2,e2)处的切线方程为ye2e2(x2),即ye2xe2.当x0时,ye2,当y0时,x1.S1|e2|e2.呈重点、现规律1利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式解题时,能认真观察函数的结构特征,积极地进行联想化归2有些函数可先化简再应用公式求导如求y12sin2的导数因为y12sin2cos x,所以y(cos x)sin x.3对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.一、基础过关1下列结论中正确的个数为()

11、yln 2,则y;y,则y|x3;y2x,则y2xln 2;ylog2x,则y.A0 B1 C2 D3答案D解析yln 2为常数,所以y0.错2过曲线y上一点P的切线的斜率为4,则点P的坐标为()A. B.或C. D.答案B解析y4,x,故选B.3已知f(x)xa,若f(1)4,则a的值等于()A4 B4 C5 D5答案A解析f(x)axa1,f(1)a(1)a14,a4.4曲线y在xa处的切线的倾斜角为,则a_.答案解析y(),y|xa1,a.5若曲线y在点(a,)处的切线与两个坐标轴围成的三角形的面积为18,则a等于()A64 B32 C16 D8答案A解析y,y,曲线在点(a,)处的切线

12、斜率k,切线方程为y(xa)令x0得y;令y0得x3a.该切线与两坐标轴围成的三角形的面积为S3a18,a64.6曲线y在点M(3,3)处的切线方程是_答案xy60解析y,y|x31,过点(3,3)的斜率为1的切线方程为y3(x3)即xy60.7求下列函数的导数:(1)y;(2)y;(3)y2sin (12cos2);(4)ylog2x2log2x.解(1)y()(x)x1x.(2)y()(x4)4x414x5.(3)y2sin (12cos2)2sin (2cos21)2sin cos sin x,y(sin x)cos x.(4)ylog2x2log2xlog2x,y(log2x).二、能

13、力提升8已知直线ykx是曲线yex的切线,则实数k的值为()A. B Ce De答案D解析yex,设切点为(x0,y0),则ex0ex0x0,x01,ke.9(2013江西)设函数f(x)在(0,)内可导,且f(ex)xex,则f(1)_.答案2解析设ext,则xln t(t0),f(t)ln ttf(t)1,f(1)2.10求下列函数的导数:(1)yx;(2)yx7;(3)y;(4)yln 3;(5)yx(x0)解(1)y(x)().(2)y7x6.(3)y(x5)5x6.(4)y(ln 3)0.(5)因为yx,所以y,所以y().11已知f(x)cos x,g(x)x,求适合f(x)g(x

14、)0的x的值解f(x)cos x,g(x)x,f(x)(cos x)sin x,g(x)x1,由f(x)g(x)0,得sin x10,即sin x1,但sin x1,1,sin x1,x2k,kZ.12已知抛物线yx2,直线xy20,求抛物线上的点到直线的最短距离解根据题意可知,与直线xy20平行的抛物线yx2的切线,对应的切点到直线xy20的距离最短,设切点坐标为(x0,x),则y|xx02x01,所以x0,所以切点坐标为,切点到直线xy20的距离d,所以抛物线上的点到直线xy20的最短距离为.三、探究与拓展13设f0(x)sin x,f1(x)f0(x),f2(x)f1(x),fn1(x)fn(x),nN,试求f2 014(x)解f1(x)(sin x)cos x,f2(x)(cos x)sin x,f3(x)(sin x)cos x,f4(x)(cos x)sin x,f5(x)(sin x)f1(x),f6(x)f2(x),fn4(x)fn(x),可知周期为4,f2 014(x)f2(x)sin x.欢迎广大教师踊跃来稿,稿酬丰厚。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3