1、河南省开封市2015届高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1集合U=1,2,3,4,5,6,N=1,4,5,M=2,3,4,则N(UM)=( )A1,4,5B1,5C4D1,2,3,4,52已知复数z=(a21)+(a2)i(aR),则“a=1”是“z为纯虚数”的( )A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件3若向量=(1,2),=(3,4),则()(+)等于( )A20B(10,30)C54D(8,24)4过点M(1,2)的直线l与圆C:(x3)2+( y4)2=25交于A、B两点,C为圆
2、心,当ACB最小时,直线l的方程是( )Ax2y+3=0B2x+y4=0Cxy+1=0Dx+y3=05某几何体的三视图如图所示,侧视图、俯视图都是边长为1 的正方形,则此几何体的外接球的表面积为( )A3B4C2D6若,则cos(+)的值等于( )ABCD7气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位):甲地:5个数据的中位数为24,众数为22;乙地:5个数据的中位数为27,总体均值为24;丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2则肯定进入夏季的地区有( )A0 个B
3、1 个C2 个D3 个8给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是( )A1B2C3D49若函数,则f(x)的最大值是( )A1B2CD10三棱锥SABC中,SBA=SCA=90,ABC是斜边AB=a的等腰直角三角形,则以下结论中:异面直线SB与AC所成的角为90直线SB平面ABC;平面SBC平面SAC;点C到平面SAB的距离是a其中正确的个数是( )A1B2C3D411已知ab0,椭圆C1的方程为=1,双曲线C2的方程为=1,C1与C2的离心率之积为,则C1、C2的离心率分别为( )A,3BC,2D12已知函数y=f(x1)的图象关于点(1,0)对称,且
4、当x(,0)时,f(x)+xf(x)0成立(其中f(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(log3)f(log3),c=(log3)f(log3),则 a,b,c的大小关系是( )AabcBcabCcbaDacb二、填空题:本大题共4小题,每小题5分13设实数x、y 满足,则z=2x+3y1的最大值是_14若函数f(x)=1oga(x+1)(a0且a1)的定义域为(0,+),则实数a的取值范围是_15在ABC中,角A,B,C所对的边分别为a,b,c,且C=,sinA=,ca=5,则b=_16已知,是单位向量,=0,若向量与向量、共面,且满足|=1,则|的取值范围是_
5、三、解答题:解答应写出文字说明,证明过程和演算步骤17等差数列an中公差d0,a1=3,a1、a4、a13成等比数列()求an;()设an的前n项和为Sn,求:18某种产品按质量标准分成五个等级,等级编号x依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:x12345频率a0.30.35bc(1)若所抽取的20件产品中,等级编号为4的恰有2件,等级编辑为5的恰有4件,求a,b,c的值(2)在(1)的条件下,将等级编辑为4的2件产品记为x1、x2,等级编辑为5的4件产品记为y1,y2,y3,y4,现从x1、x2,y1,y2,y3,y4,这6件产
6、品中任取两件(假定每件产品被取出的可能性相同),写出所有可能的结果,并求这两件产品的等级编号恰好相同的概率19如图,在三棱柱ABCA1B1C1中,A1B平面ABC,ABAC()求证:ACBB1;()若P是棱B1C1的中点,求平面PAB将三棱柱ABCA1B1C1分成的两部分体积之比撸啊20已知函数f(x)=ax2+(a1)2x+a(a1)2ex(其中aR)()若x=0为f(x)的极值点,求a的值;()在()的条件下,解不等式21已知抛物线C:x2=2py(p0)的焦点为F,抛物线上一点A的横坐标为x1(x10),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线于点M,当|FD|=2时
7、,AFD=60(1)求证:AFQ为等腰三角形,并求抛物线C的方程;(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求PMN面积的最小值,并求取到最小值时的x1值【选修4-1:几何证明选讲】22如图,ABC是直角三角形,ABC=90,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DMAC+DMAB【选修4-4:坐标系与参数方程】23在直角坐标系xoy中,直线I的参数方程为 (t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为=cos(+)(
8、1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值【选修4-5:不等式选讲】24已知函数f(x)=|x1|()解不等式f(2x)+f(x+4)8;()若|a|1,|b|1,a0,求证: 河南省开封市2015届高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1集合U=1,2,3,4,5,6,N=1,4,5,M=2,3,4,则N(UM)=( )A1,4,5B1,5C4D1,2,3,4,5考点:交、并、补集的混合运算 专题:集合分析:根据集合的基本运算求解即可解答:解:U=1,2,3,4,5,6
9、,N=1,4,5,M=2,3,4,N(UM)=1,4,51,5,6=1,5,故选:B点评:本题主要考查集合关系的应用,比较基础2已知复数z=(a21)+(a2)i(aR),则“a=1”是 “z为纯虚数”的( )A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件考点:复数的基本概念 专题:计算题分析:当a=1时,复数z=(a21)+(a2)i=i,是一个纯虚数;当z为纯虚数时,a=1,不能推出a=1解答:解:当a=1时,复数z=(a21)+(a2)i=i,是一个纯虚数当复数z=(a21)+(a2)i=i是一个纯虚数时,a21=0 且a20,a=1,故不能推出a=1故“a=1”是“z
10、为纯虚数”的充分非必要条件,故选A点评:本题考查复数的基本概念,充分条件、必要条件的定义,是一道基础题3若向量=(1,2),=(3,4),则()(+)等于( )A20B(10,30)C54D(8,24)考点:平面向量数量积的运算 专题:计算题分析:根据所给的条件,首先要写出两个向量的数量积和两个向量的和的坐标,再进行数乘运算,本题是一个实数和一个向量的积的运算解答:解:,故选B点评:本题考查向量的数量积,考查向量的和的运算,考查向量的数乘运算,是一个基础题,没有易错点,是一个送分题目4过点M(1,2)的直线l与圆C:(x3)2+( y4)2=25交于A、B两点,C为圆心,当ACB最小时,直线l
11、的方程是( )Ax2y+3=0B2x+y4=0Cxy+1=0Dx+y3=0考点:直线与圆相交的性质 专题:计算题;直线与圆分析:当直线AB与直线CM垂直时,ACB最小,由M与C的坐标求出直线CM的斜率,利用两直线垂直时斜率的乘积为1求出直线AB的斜率,由M坐标与求出的斜率即可得出此时直线l的方程解答:解:将圆的方程化为标准方程为(x3)2+(y4)2=25,圆心坐标C为(3,4),M(1,2),kCM=1,kAB=1,则此时直线l的方程为y2=(x1),即x+y3=0故选:D点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,直线与圆的位置关系由d与r的大小关系
12、来判断,当dr时,直线与圆相离;当d=r时,直线与圆相切;当dr时,直线与圆相交(d为圆心到直线的距离,r为圆的半径)根据题意得出当直线AB与直线CM垂直时ACB最小是解本题的关键5某几何体的三视图如图所示,侧视图、俯视图都是边长为1 的正方形,则此几何体的外接球的表面积为( )A3B4C2D考点:由三视图求面积、体积 专题:空间位置关系与距离分析:如图所示,该几何体是一个直三棱柱,其左侧面与底侧面都是边长为1的正方形且相互垂直,其外接球的直径2R=,即可得出解答:解:如图所示,该几何体是一个直三棱柱,其左侧面与底侧面都是边长为1的正方形且相互垂直,其外接球的直径2R=,外接球的表面积S=3故
13、选:A点评:本题考查了三棱柱的三视图及其外接球的表面积,属于基础题6若,则cos(+)的值等于( )ABCD考点:两角和与差的余弦函数 分析:先根据、的范围确定、的范围,再由所给的三角函数值确定+的大小,进而可得答案解答:解:由,则,又,所以,解得,所以cos(+)=,故选B点评:本题主要考查求三角函数值的问题,这里一定要注意角的取值范围7气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位):甲地:5个数据的中位数为24,众数为22;乙地:5个数据的中位数为27,总体均值为24;丙地:5个数据中有一个
14、数据是32,总体均值为26,总体方差为10.2则肯定进入夏季的地区有( )A0 个B1 个C2 个D3 个考点:众数、中位数、平均数 专题:概率与统计分析:根据数据的特点进行估计出甲、乙、丙三地连续5天的日平均温度的记录数据,分析数据的可能性进行解答即可得出答案解答:解:甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22,22,24,25,26其连续5天的日平均温度均不低于22 乙地:5个数据的中位数为27,总体均值为24当5个数据为19,20,27,27,27可知其连续5天的日平均温度有低于22,故不确定丙地:5个数据中有一个数据是32,总
15、体均值为26,若有低于22,则取21,此时方差就超出了10.8,可知其连续5天的日平均温度均不低于22则肯定进入夏季的地区有甲、丙三地故选:C点评:本题考查中位数、众数、平均数、方差的数据特征,简单的合情推理,解答此题应结合题意,根据平均数的计算方法进行解答、取特值即可8给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的个数是( )A1B2C3D4考点:选择结构 专题:图表型;分类讨论分析:由已知的流程图,我们易得这是一个计算并输出分段函数函数值的程序,我们根据条件,分x2,2x5,x5三种情况分别讨论,满足输入的x值与输出的y值相等的情况,即可得到答案解答:解:当x2
16、时,由x2=x得:x=0,1满足条件;当2x5时,由2x3=x得:x=3,满足条件;当x5时,由=x得:x=1,不满足条件,故这样的x值有3个故选C点评:根据流程图(或伪代码)写程序的运行结果,我们要先分析流程图(或伪代码)判断其功能,并将其转化为数学问题,建立数学模型后,用数学的方法解答即可得到答案9若函数,则f(x)的最大值是( )A1B2CD考点:同角三角函数基本关系的运用 分析:先对函数f(x)=(1+tanx)cosx进行化简,再根据x的范围求最大值解答:解:f(x)=(1+tanx)cosx=cosx+sinx=2sin(x+)0x,x+f(x)1,2故选B点评:本题主要考查三角函
17、数求最值问题一般都是先将函数式进行化简再求值,这里一定要注意角的取值范围10三棱锥SABC中,SBA=SCA=90,ABC是斜边AB=a的等腰直角三角形,则以下结论中:异面直线SB与AC所成的角为90直线SB平面ABC;平面SBC平面SAC;点C到平面SAB的距离是a其中正确的个数是( )A1B2C3D4考点:平面与平面垂直的判定;异面直线及其所成的角 专题:空间位置关系与距离分析:由条件根据异面直线所成的角,直线和平面垂直的判定定理、性质定理,平面和平面垂直的判定定理,判断各个选项是否正确,从而得出结论解答:解:由题意知AC平面SBC,故ACSB,故正确;再根据SBAC、SBAB,可得SB平
18、面ABC,平面SBC平面SAC,故正确;取AB的中点E,连接CE,可证得CE平面SAB,故CE的长度即为C到平面SAB的距离a,正确,故选:D点评:本题主要考查异面直线所成的角,直线和平面垂直的判定定理、性质定理,平面和平面垂直的判定定理的应用,体现了转化的数学思想,属于基础题11已知ab0,椭圆C1的方程为=1,双曲线C2的方程为=1,C1与C2的离心率之积为,则C1、C2的离心率分别为( )A,3BC,2D考点:双曲线的简单性质;椭圆的简单性质 专题:圆锥曲线的定义、性质与方程分析:求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程解答:解:ab0,椭圆C1的方程为=1
19、,C1的离心率为:,双曲线C2的方程为=1,C2的离心率为:,C1与C2的离心率之积为,=,()2=,则C1的离心率=则C2的离心率:=故选:B点评:本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查12已知函数y=f(x1)的图象关于点(1,0)对称,且当x(,0)时,f(x)+xf(x)0成立(其中f(x)是f(x)的导函数),若a=(30.3)f(30.3),b=(log3)f(log3),c=(log3)f(log3),则 a,b,c的大小关系是( )AabcBcabCcbaDacb考点:函数单调性的性质;导数的运算;不等式比较大小 专题:计算题;函数的性质及应
20、用分析:由函数y=f(x1)的图象关于点(1,0)对称,知f(x)为奇函数,当x(,0)时,f(x)+xf(x)0成立,所以xf(x)为减函数,由此能判断a,b,c的大小关系解答:解:当x(,0)时不等式f(x)+xf(x)0成立,即:(xf(x)0,xf(x)在 (,0)上是减函数又函数y=f(x1)的图象关于点(1,0)对称,函数y=f(x)的图象关于点(0,0)对称,函数y=f(x)是定义在R上的奇函数xf(x)是定义在R上的偶函数xf(x)在 (0,+)上是增函数又30.31log230=2,2=,()f()30.3f(30.3)(log3)f(log3),即()f()30.3f(30
21、.3)(log3)f(log3)即:cab故选B点评:本题考查函数的奇偶性和单调性的应用,解题时要认真审题,仔细解答,注意对数函数性质的合理运用二、填空题:本大题共4小题,每小题5分13设实数x、y 满足,则z=2x+3y1的最大值是9考点:简单线性规划 专题:不等式的解法及应用分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值解答:解:作出不等式对应的平面区域(阴影部分),由z=2x+3y1,得y=+,平移直线y=+,由图象可知当直线y=+,经过点B时,直线y=+截距最大,此时z最大由,解得,即B(2,2)此时z的最大值为z=22+321=9,故答案为:9点评:本题
22、主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法14若函数f(x)=1oga(x+1)(a0且a1)的定义域为(0,+),则实数a的取值范围是a,a1考点:对数函数的图像与性质 专题:计算题;函数的性质及应用分析:函数f(x)=1oga(x+1)(a0且a1)的定义域为(0,+)可化为x+10在(0,+)上恒成立;从而得到21;从而解得解答:解:由题意,x+10在(0,+)上恒成立,而x+2;(当且仅当x=,即x=时,等号成立)故21;故a,a1;故答案为:a,a1点评:本题考查了基本不等式的应用及恒成立问题,属于基础题15在ABC中,角A,B,C所对的边分别为a,b,c,且C
23、=,sinA=,ca=5,则b=考点:余弦定理;正弦定理 专题:计算题;解三角形分析:由已知可求得cosA,sinB,sinC,由正弦定理得 =,又因为ca=5,从而可求得a,即可由正弦定理求b=的值解答:解:因为C=,sinA=,所以cosA=,由三角形内角和得B=,所以sinB=sin()=sincosAcossinA=,已知C=,所以sinC=,由正弦定理得 =,又因为ca=5,所以c=5,a=,由sinB=,所以b=,故答案为:点评:本题主要考查了正弦定理、两角差的正弦公式的应用,属于基本知识的考查16已知,是单位向量,=0,若向量与向量、共面,且满足|=1,则|的取值范围是1,+1考
24、点:平面向量数量积的运算 专题:计算题;平面向量及应用分析:由,是单位向量,=0可设=(1,0),=(0,1),=(x,y),由向量满足|+|=1,可得(x1)2+(y+1)2=1其圆心C(1,1),半径r=1利用|OC|r|=|OC|+r即可得出解答:解:由,是单位向量,=0,可设=(1,0),=(0,1),=(x,y),向量满足|+|=1,|(x1,y+1)|=1,=1,即(x1)2+(y+1)2=1其圆心C(1,1),半径r=1|OC|=1|=+1|的取值范围是1,+1故答案为:1,+1点评:本题考查了向量的垂直与数量积的关系、数量积的运算性质、点与圆上的点的距离大小关系,考查了推理能力
25、和计算能力,属于中档题三、解答题:解答应写出文字说明,证明过程和演算步骤17等差数列an中公差d0,a1=3,a1、a4、a13成等比数列()求an;()设an的前n项和为Sn,求:考点:数列的求和;等比数列的通项公式;等比数列的性质 专题:等差数列与等比数列分析:(I)a1、a4、a13成等比数列可得,利用等差数列的通项公式可得(3+3d)2=3(3+12d),解出即可(II)由(I)可得:Sn=n(n+2),利用“裂项求和”即可得出解答:解:(I)a1、a4、a13成等比数列,(3+3d)2=3(3+12d),化为d22d=0,d0,解得d=2an=3+2(n1)=2n+1(II)由(I)
26、可得:Sn=n(n+2),=+=点评:本题考查了等差数列的通项公式、“裂项求和”,考查了计算能力,属于基础题18某种产品按质量标准分成五个等级,等级编号x依次为1,2,3,4,5,现从一批产品中随机抽取20件,对其等级编号进行统计分析,得到频率分布表如下:x12345频率a0.30.35bc(1)若所抽取的20件产品中,等级编号为4的恰有2件,等级编辑为5的恰有4件,求a,b,c的值(2)在(1)的条件下,将等级编辑为4的2件产品记为x1、x2,等级编辑为5的4件产品记为y1,y2,y3,y4,现从x1、x2,y1,y2,y3,y4,这6件产品中任取两件(假定每件产品被取出的可能性相同),写出
27、所有可能的结果,并求这两件产品的等级编号恰好相同的概率考点:古典概型及其概率计算公式 专题:概率与统计分析:(1)由频率分布表得a+0.3+0.35+b+c=1,b=0.1,c=0.2,由此能求出结果(2)从产品x1,x2,y1,y2,y3,y4中任取两件,所有可能的结果共15个,利用列举法能写出所有可能结果,设A表示“从x1、x2,y1,y2,y3,y4,这6件产品中任取两件这两件产品的等级编号恰好相同”A包含的基本事件7个,由此能求出结果解答:解:(1)由频率分布表得a+0.3+0.35+b+c=1,即a+b+c=0.35,抽取的20件产品中,等级编号为4的恰有2件,b=0.1,等级编号为
28、5的恰有4件,c=0.2,a=0.35bc=0.05故a=0.05,b=0.10,c=0.20(2)从产品x1,x2,y1,y2,y3,y4中任取两件,所有可能的结果为:x1,x2,x1,y1,x1,y2,x1,y3,x1,y4,x2,y1,x2,y2,x2,y3,x2,y4,y1,y2,y1,y3,y1,y4,y2,y3,y2,y4,y3,y4,共15个设A表示“从x1、x2,y1,y2,y3,y4,这6件产品中任取两件这两件产品的等级编号恰好相同”则A包含的基本事件为:x1,x2,y1,y2,y1,y3,y1,y4,y2,y3,y2,y4,y3,y4,共7个,故所求概率为:p=点评:本题考
29、查频率分布表的应用,考查概率的求法,是基础题,解题时要注意列举法的合理运用19如图,在三棱柱ABCA1B1C1中,A1B平面ABC,ABAC()求证:ACBB1;()若P是棱B1C1的中点,求平面PAB将三棱柱ABCA1B1C1分成的两部分体积之比撸啊考点:棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系 专题:空间位置关系与距离分析:()由已知得平面ABB1A1平面ABC,从而ABAC,进而AC平面ABB1A1,由此能证明ACBB1()设平面PAB与棱A1C1交于Q,连结AQ,PQ,将棱台C1PQABC还原为棱锥SABC,由此能求出平面PAB将三棱柱ABCA1B1C1分成的两部分体积之
30、比解答:()证明:在三棱柱ABCA1B1C1中,A1B平面ABC,A1B平面ABB1,平面ABB1A1平面ABC,平面ABB1A1平面ABC=AB,ABAC,AC平面ABB1A1,ACBB1()解:设平面PAB与棱A1C1交于Q,P为棱B1C1的中点,Q为棱A1C1的中点,连结AQ,PQ,设三棱柱ABCA1B1C1的底面积为S,高为h,体积为V,则Sh=V,如图,将棱台C1PQABC还原为棱锥SABC,解得=V,=V=,平面PAB将三棱柱ABCA1B1C1分成的两部分体积之比为:=点评:本题考查异面直线垂直的证明,考查两个几何体的体积之比的求法,解题时要认真审题,注意空间思维能力的培养20已知
31、函数f(x)=ax2+(a1)2x+a(a1)2ex(其中aR)()若x=0为f(x)的极值点,求a的值;()在()的条件下,解不等式考点:利用导数研究函数的极值;利用导数研究函数的单调性 专题:计算题;导数的概念及应用;导数的综合应用分析:()求导f(x)=ax2+(a2+1)x+aex,从而可得a=0;()当a=0时,不等式可化为(x1)ex(x1)(x2+x+1),即(x1)(ex(x2+x+1)0,令g(x)=ex(x2+x+1),h(x)=g(x)=exx1,从而由导数解不等式解答:解:()f(x)=ax2+(a1)2x+a(a1)2exf(x)=ax2+(a2+1)x+aex,x=
32、0为f(x)的极值点,f(0)=ae0=0,a=0;经检验成立;()当a=0时,不等式可化为(x1)ex(x1)(x2+x+1),即(x1)(ex(x2+x+1)0,令g(x)=ex(x2+x+1),h(x)=g(x)=exx1,h(x)=ex1;当x0时,h(x)=ex10,当x0时,h(x)=ex10;故h(x)在(,0)上单调递减,在(0,+)上单调递增,所以h(x)h(0)=0;故g(x)在R上单调递增,且g(0)=0;故ex(x2+x+1)0,x0;ex(x2+x+1)0,x0;所以原不等式的解集为x|x0或x1点评:本题考查了导数的综合应用及不等式的解法的应用,属于中档题21已知抛
33、物线C:x2=2py(p0)的焦点为F,抛物线上一点A的横坐标为x1(x10),过点A作抛物线C的切线l1交x轴于点D,交y轴于点Q,交直线于点M,当|FD|=2时,AFD=60(1)求证:AFQ为等腰三角形,并求抛物线C的方程;(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,交直线l于点N,求PMN面积的最小值,并求取到最小值时的x1值考点:直线与圆锥曲线的综合问题;抛物线的标准方程 专题:圆锥曲线中的最值与范围问题分析:(1)设,则A处的切线方程为,即可得到得D,Q的坐标,利用两点间的距离公式即可得到|FQ|=|AF|由点A,Q,D的坐标可知:D为线段AQ的
34、中点,利用等腰三角形的性质可得FDAQ,可得|AF|,利用两点间的距离概率及点A满足抛物线的方程即可得出(2)设B(x2,y2)(x20),则B处的切线方程为,与切线l1的方程联立即可得到点P的坐标,同理求出点M,N的坐标进而得到三角形PMN的面积(h为点P到MN的距离),利用表达式及其导数即可得到最小值,即可得出x1的值解答:解:(1)设,则A处的切线方程为,可得:,;AFQ为等腰三角形由点A,Q,D的坐标可知:D为线段AQ的中点,|AF|=4,得:p=2,C:x2=4y(2)设B(x2,y2)(x20),则B处的切线方程为联立得到点P,联立得到点M同理,设h为点P到MN的距离,则= 设AB
35、的方程为y=kx+b,则b0,由得到x24kx4b=0,得代入得:S=,要使面积最小,则应k=0,得到令,得=,则=,所以当时,S(t)单调递减;当时,S(t)单调递增,所以当时,S取到最小值为,此时,k=0,所以,解得故PMN面积取得最小值时的x1值为点评:本题综合考查了利用导数的几何意义得到抛物线的切线的斜率、直线与抛物线相交问题转化为方程联立得到根与系数的关系、等腰三角形的性质、利用导数研究函数的单调性、极值与最值等知识与方法,熟练掌握其解题模式是解题的关键【选修4-1:几何证明选讲】22如图,ABC是直角三角形,ABC=90,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD
36、交圆O于点M(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DMAC+DMAB考点:与圆有关的比例线段 专题:证明题;直线与圆分析:(1)连接BE、OE,由直径所对的圆周角为直角,得到BEEC,从而得出DE=BD=,由此证出ODEODB,得OED=OBD=90,利用圆内接四边形形的判定定理得到O、B、D、E四点共圆;(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DMDH,再将DH分解为DO+OH,并利用OH=和DO=,化简即可得到等式2DE2=DMAC+DMAB成立解答:解:(1)连接BE、OE,则AB为圆0的直径,AEB=90,得BEEC,又D是B
37、C的中点,ED是RtBEC的中线,可得DE=BD又OE=OB,OD=OD,ODEODB可得OED=OBD=90,因此,O、B、D、E四点共圆;(2)延长DO交圆O于点H,DEOE,OE是半径,DE为圆O的切线可得DE2=DMDH=DM(DO+OH)=DMDO+DMOHOH=,OD为ABC的中位线,得DO=,化简得2DE2=DMAC+DMAB点评:本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题【选修4-4:坐标系与参数方程】23在直角坐标系xoy中,直线I的参数方程为 (t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程
38、为=cos(+)(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值考点:参数方程化成普通方程 专题:计算题;直线与圆;坐标系和参数方程分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值解答:解:(1)直线I的参数方程为 (t为参数),消去t,可得,3x+4y+1=0;由于=cos(+)=(),即有2=cossin,则有x2+y2x+y=0,其圆心为(,),半径为r=,圆心到直线的距离d=,故弦长为2=2=;
39、(2)可设圆的参数方程为:(为参数),则设M(,),则x+y=sin(),由于R,则x+y的最大值为1点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题【选修4-5:不等式选讲】24已知函数f(x)=|x1|()解不等式f(2x)+f(x+4)8;()若|a|1,|b|1,a0,求证:考点:绝对值不等式的解法 专题:不等式的解法及应用;推理和证明分析:()依题意,f(2x)+f(x+4)=|2x1|+|x+3|=,利用分段函数分段解不等式f(2x)+f(x+4)8,即可求得其解集()|a|1,|b|1,f(ab)|a|f()
40、|ab1|ab|,要证该不等式成立,只需证明|ab1|2|ab|20即可解答:()解:f(2x)+f(x+4)=|2x1|+|x+3|=,当x3时,由3x28,解得x;当3时,由x+48,解得x;当x时,由3x+28,解得x24分所以,不等式f(2x)+f(x+4)8的解集为x|x或x25分;()证明:等价于f(ab)|a|f(),即|ab1|ab|,因为|a|1,|b|1,所以|ab1|2|ab|2=(a2b22ab+1)(a22ab+b2)=(a21)(b21)0,所以,|ab1|ab|,故所证不等式成立10分点评:本题考查绝对值不等式的解法,着重考查分类讨论思想与等价转化思想的综合运用,考运算及推理、证明能力,属于中档题