1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时素养评价二独立性检验的基本思想及其初步应用 (15分钟30分)1.与表格相比,能更直观地反映出相关数据总体状况的是()A.列联表B.散点图C.残差图D.等高条形图【解析】选D.对于A,列联表需要计算K2的值,不是直观地分析;对于B,散点图体现的是变量间相关性的强弱;对于C,残差图体现预报变量与实际值之间的差距,对于D,等高条形图能直观地反映两个分类变量是否有关系.2.某班主任对全班50名学生进行了作业量的调查,数据如表:认为作业量大认为作业量不大总计男生18927女生
2、81523总计262450则推断“学生的性别与认为作业量大有关”,这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001【解析】选C.k=5.0595.024.因为P(K25.024)=0.025,所以犯错误的概率不超过0.025.3.假设有两个分类变量X与Y,它们的可能取值分别为x1,x2和y1,y2,其22列联表为:y1y2x11018x2m26则当m取下面何值时,X与Y的关系最弱()A.8B.9C.14D.19【解析】选C.由102618m,解得m14.4,所以当m=14时,X与Y的关系最弱.4.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清
3、的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用22列联表计算得K23.918,经查临界值表知P(K23.841)0.05.则下列结论中,正确结论的序号是_.在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”;若某人未使用该血清,那么他在一年中有95%的可能性得感冒;这种血清预防感冒的有效率为95%;这种血清预防感冒的有效率为5%.【解析】K23.9183.841,而P(K23.841)0.05,所以在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清
4、预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.答案:5.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K2=【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为=14%.(2)由列联表中数据,得K2的观测值为k=9.967.由于9.9676.635,所以在犯错误的概率不超过0
5、.01的前提下认为该地区的老年人是否需要帮助与性别有关. (25分钟50分)一、选择题(每小题5分,共20分)1.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:文化程度与月收入列联表(单位:人)月收入2 000元以下月收入2 000元及以上总计高中文化以上104555高中文化及以下203050总计3075105由上表中数据计算得K2的观测值k=6.109,请估计认为“文化程度与月收入有关系”,其犯错误的概率为()A.1%B.99%C.2.5%D.97.5%【解析】选C.由于6.1095.024,故在犯错误的概率不超过0.025的前提下,认为“文化程度与月收入有关
6、系”.2.下列说法正确的有()分类变量的取值仅表示个体所属的类别,它们的取值一定是离散的;分类变量的取值也可以用数字来表示,但这时的数字除了分类以外没有其他的含义;22列联表是两个分类变量的频数汇总统计表;22列联表和等高条形图都能反映出两个分类变量间是否相互影响.A.B.C.D.【解析】选A.由分类变量的定义可知正确;由22列联表的定义可知正确;22列联表和等高条形图都能展示样本的频率特征,若在一个分类变量所取值的群体中,另一个分类变量所取值的频率相差较小,则说明这两个变量不相互影响,否则就相互影响.故正确.3.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从
7、图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比例为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比例为60%【解析】选C.由等高条形图知:女生喜欢理科的比例为20%,男生不喜欢理科的比例为40%,因此,B、D不正确.还可知男生比女生喜欢理科的可能性大些.4.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有显著效果的图形是()【解析】选D.分析四个等高条形图得选项D中,不服用药物患病的概率最大,服用药物患病的概率最小,所以最能体现该药物对预防禽流感有显著效果.二
8、、填空题(每小题5分,共10分)5.某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率为_.【解析】列出22列联表:发病不发病总计阳性家族史1693109阴性家族史17240257总计33333366所以随机变量K2的观测值k=6.0675.024,所以在犯错误的概率不超过0.025的前提下,认为糖尿病患者与遗传有关.答案:0.9756.在研究性别(是否为女性)与是否爱吃零食这两个分类变量是否有关系时,下列说法中正确的是_.若K2的观测值k6.635,则我们在犯错误的概
9、率不超过0.01的前提下认为爱吃零食与性别有关系,那么在100个爱吃零食的人中必有99人是女性;由独立性检验可知在犯错误的概率不超过0.01的前提下认为爱吃零食与性别有关系时,如果某人爱吃零食,那么此人是女性的可能性为99%;由独立性检验可知在犯错误的概率不超过0.01的前提下认为爱吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.【解析】K2的观测值是支持确定有多大把握认为“两个分类变量吃零食与性别有关系”的随机变量值,所以由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误,故填.答案:三、解答
10、题(每小题10分,共20分)7.某学生对其亲属30人的饮食进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列22列联表:主食蔬菜主食肉类总计50岁以下50岁以上总计(2)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关?并写出简要分析.【解析】(1)22列联表如下:主食蔬菜主食肉类总计50岁以下481250岁以上16218总计201030(2)因为K2的观测值k=106.635,P(K26.635)=0.01,所以可以在犯错误的概率不超过0.01的前提
11、下认为其亲属的饮食习惯与年龄有关.8.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性中只有的人的休闲方式是运动.(1)完成下列22列联表:运动非运动总计男性女性总计n(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?【解题指南】(1)依据22列联表的定义填表;(2)计算K2,利用临界值建立不等关系,求n的值.【解析】(1)补全22列联表如下:运动非运动总计男性nnn女性nnn总计nnn(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,则k03.841.由于K2的观测值k=,故3.841,即n138.276.又由nZ,故n140.故若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的至少有140人.关闭Word文档返回原板块