ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:275KB ,
资源ID:115452      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-115452-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年人教A版数学选修1-2课时素养评价 1-2 独立性检验的基本思想及其初步应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年人教A版数学选修1-2课时素养评价 1-2 独立性检验的基本思想及其初步应用 WORD版含解析.doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时素养评价二独立性检验的基本思想及其初步应用 (15分钟30分)1.与表格相比,能更直观地反映出相关数据总体状况的是()A.列联表B.散点图C.残差图D.等高条形图【解析】选D.对于A,列联表需要计算K2的值,不是直观地分析;对于B,散点图体现的是变量间相关性的强弱;对于C,残差图体现预报变量与实际值之间的差距,对于D,等高条形图能直观地反映两个分类变量是否有关系.2.某班主任对全班50名学生进行了作业量的调查,数据如表:认为作业量大认为作业量不大总计男生18927女生

2、81523总计262450则推断“学生的性别与认为作业量大有关”,这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001【解析】选C.k=5.0595.024.因为P(K25.024)=0.025,所以犯错误的概率不超过0.025.3.假设有两个分类变量X与Y,它们的可能取值分别为x1,x2和y1,y2,其22列联表为:y1y2x11018x2m26则当m取下面何值时,X与Y的关系最弱()A.8B.9C.14D.19【解析】选C.由102618m,解得m14.4,所以当m=14时,X与Y的关系最弱.4.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清

3、的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用22列联表计算得K23.918,经查临界值表知P(K23.841)0.05.则下列结论中,正确结论的序号是_.在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”;若某人未使用该血清,那么他在一年中有95%的可能性得感冒;这种血清预防感冒的有效率为95%;这种血清预防感冒的有效率为5%.【解析】K23.9183.841,而P(K23.841)0.05,所以在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清

4、预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.答案:5.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例.(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K2=【解析】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为=14%.(2)由列联表中数据,得K2的观测值为k=9.967.由于9.9676.635,所以在犯错误的概率不超过0

5、.01的前提下认为该地区的老年人是否需要帮助与性别有关. (25分钟50分)一、选择题(每小题5分,共20分)1.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:文化程度与月收入列联表(单位:人)月收入2 000元以下月收入2 000元及以上总计高中文化以上104555高中文化及以下203050总计3075105由上表中数据计算得K2的观测值k=6.109,请估计认为“文化程度与月收入有关系”,其犯错误的概率为()A.1%B.99%C.2.5%D.97.5%【解析】选C.由于6.1095.024,故在犯错误的概率不超过0.025的前提下,认为“文化程度与月收入有关

6、系”.2.下列说法正确的有()分类变量的取值仅表示个体所属的类别,它们的取值一定是离散的;分类变量的取值也可以用数字来表示,但这时的数字除了分类以外没有其他的含义;22列联表是两个分类变量的频数汇总统计表;22列联表和等高条形图都能反映出两个分类变量间是否相互影响.A.B.C.D.【解析】选A.由分类变量的定义可知正确;由22列联表的定义可知正确;22列联表和等高条形图都能展示样本的频率特征,若在一个分类变量所取值的群体中,另一个分类变量所取值的频率相差较小,则说明这两个变量不相互影响,否则就相互影响.故正确.3.下面是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从

7、图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比例为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比例为60%【解析】选C.由等高条形图知:女生喜欢理科的比例为20%,男生不喜欢理科的比例为40%,因此,B、D不正确.还可知男生比女生喜欢理科的可能性大些.4.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有显著效果的图形是()【解析】选D.分析四个等高条形图得选项D中,不服用药物患病的概率最大,服用药物患病的概率最小,所以最能体现该药物对预防禽流感有显著效果.二

8、、填空题(每小题5分,共10分)5.某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率为_.【解析】列出22列联表:发病不发病总计阳性家族史1693109阴性家族史17240257总计33333366所以随机变量K2的观测值k=6.0675.024,所以在犯错误的概率不超过0.025的前提下,认为糖尿病患者与遗传有关.答案:0.9756.在研究性别(是否为女性)与是否爱吃零食这两个分类变量是否有关系时,下列说法中正确的是_.若K2的观测值k6.635,则我们在犯错误的概

9、率不超过0.01的前提下认为爱吃零食与性别有关系,那么在100个爱吃零食的人中必有99人是女性;由独立性检验可知在犯错误的概率不超过0.01的前提下认为爱吃零食与性别有关系时,如果某人爱吃零食,那么此人是女性的可能性为99%;由独立性检验可知在犯错误的概率不超过0.01的前提下认为爱吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.【解析】K2的观测值是支持确定有多大把握认为“两个分类变量吃零食与性别有关系”的随机变量值,所以由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误,故填.答案:三、解答

10、题(每小题10分,共20分)7.某学生对其亲属30人的饮食进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列22列联表:主食蔬菜主食肉类总计50岁以下50岁以上总计(2)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关?并写出简要分析.【解析】(1)22列联表如下:主食蔬菜主食肉类总计50岁以下481250岁以上16218总计201030(2)因为K2的观测值k=106.635,P(K26.635)=0.01,所以可以在犯错误的概率不超过0.01的前提

11、下认为其亲属的饮食习惯与年龄有关.8.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性中只有的人的休闲方式是运动.(1)完成下列22列联表:运动非运动总计男性女性总计n(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?【解题指南】(1)依据22列联表的定义填表;(2)计算K2,利用临界值建立不等关系,求n的值.【解析】(1)补全22列联表如下:运动非运动总计男性nnn女性nnn总计nnn(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,则k03.841.由于K2的观测值k=,故3.841,即n138.276.又由nZ,故n140.故若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的至少有140人.关闭Word文档返回原板块

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3