1、第4讲数列求和基础巩固题组 (建议用时:40分钟)一、选择题1等差数列an的通项公式为an2n1,其前n项和为Sn,则数列的前10项的和为 ()A120B70C75D100解析因为n2,所以的前10项和为10375.答案C2若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21B2n1n21C2n1n22D2nn2解析Sn2n12n2.答案C3数列an的前n项和为Sn,已知Sn1234(1)n1n,则S17()A9B8C17D16解析S171234561516171(23)(45)(67)(1415)(1617)11119.答案A4(2014西安模拟)已知数列an满足a1
2、1,an1an2n(nN),则S2 012()A22 0121B321 0063C321 0061D321 0052解析a11,a22,又2.2.a1,a3,a5,成等比数列;a2,a4,a6,成等比数列,S2 012a1a2a3a4a5a6a2 011a2 012(a1a3a5a2 011)(a2a4a6a2 012)321 0063.故选B答案B5(2014杭州模拟)已知函数f(x)x22bx过(1,2)点,若数列的前n项和为Sn,则S2 012的值为 ()A.BC.D解析由已知得b,f(n)n2n,S2 01211.答案D二、填空题6在等比数列an中,若a1,a44,则公比q_;|a1|
3、a2|an|_.解析设等比数列an的公比为q,则a4a1q3,代入数据解得q38,所以q2;等比数列|an|的公比为|q|2,则|an|2n1,所以|a1|a2|a3|an|(12222n1)(2n1)2n1.答案22n17(2013山西晋中名校联合测试)在数列an中,a11,an1(1)n(an1),记Sn为an的前n项和,则S2 013_.解析由a11,an1(1)n(an1)可得a11,a22,a31,a40,该数列是周期为4的数列,所以S2 013503(a1a2a3a4)a2 013503 (2)1 1 005.答案1 0058(2014武汉模拟)等比数列an的前n项和Sn2n1,则
4、aaa_.解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)三、解答题9(2013江西卷)正项数列an满足:a(2n1)an2n0.(1)求数列an的通项公式an;(2)令bn,求数列bn的前n项和Tn.解(1)由a(2n1)an2n0得(an2n)(an1)0,由于an是正项数列,则an2n.(2)由(1)知an2n,故bn,Tn.10(2013上饶模拟)已知数列an的前n项和为Sn,且Sn2an2.(1)求数列an的通项公式;(2)记Sna13a2(2n1
5、)an,求Sn.解(1)Sn2an2,当n2时,anSnSn12an2(2an12),即an2an2an1,an0,2(n2,nN)a1S1,a12a12,即a12.数列an是以2为首项,2为公比的等比数列an2n.(2)Sna13a2(2n1)an12322523(2n1)2n,2Sn122323(2n3)2n(2n1)2n1,得Sn12(22222322n)(2n1)2n1,即Sn12(23242n1)(2n1)2n1Sn(2n3)2n16.能力提升题组(建议用时:25分钟)一、选择题1(2014西安模拟)数列an满足anan1(nN),且a11,Sn是数列an的前n项和,则S21()A.
6、B6C10D11解析依题意得anan1an1an2,则an2an,即数列an中的奇数项、偶数项分别相等,则a21a11,S21(a1a2)(a3a4)(a19a20)a2110(a1a2)a211016,故选B答案B2(2014长沙模拟)已知函数f(n)n2cos(n),且anf(n)f(n1),则a1a2a3a100()A100B0C100D10 200解析若n为偶数,则anf(n)f(n1)n2(n1)2(2n1),为首项为a25,公差为4的等差数列;若n为奇数,则anf(n)f(n1)n2(n1)22n1,为首项为a13,公差为4的等差数列所以a1a2a3a100(a1a3a99)(a2
7、a4a100)503450(5)4100.答案A二、填空题3设f(x),利用倒序相加法,可求得fff的值为_解析当x1x21时,f(x1)f(x2)1.设Sfff,倒序相加有2Sff10,即S5.答案5三、解答题4(2014南昌模拟)在数列an中,a15,a22,记A(n)a1a2an,B(n)a2a3an1,C(n)a3a4an2(nN),若对于任意nN,A(n),B(n),C(n)成等差数列(1)求数列an的通项公式;(2)求数列|an|的前n项和解(1)根据题意A(n),B(n),C(n)成等差数列,A(n)C(n)2B(n),整理得an2an1a2a1253,数列an是首项为5,公差为3的等差数列,an53(n1)3n8.(2)|an|记数列|an|的前n项和为Sn.当n2时,Snn;当n3时,Sn7n14,综上,Sn