收藏 分享(赏)

《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc

上传人:高**** 文档编号:108721 上传时间:2024-05-25 格式:DOC 页数:7 大小:166.50KB
下载 相关 举报
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第1页
第1页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第2页
第2页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第3页
第3页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第4页
第4页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第5页
第5页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第6页
第6页 / 共7页
《三维设计》2016届(新课标)高考数学(文)大一轮复习课时跟踪检测(二十三) 正弦定理和余弦定理 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家课时跟踪检测(二十三)正弦定理和余弦定理(分A、B卷,共2页)A卷:夯基保分一、选择题1(2015昆明调研)已知ABC中,内角A,B,C所对边长分别为a,b,c,若A,b2acos B,c1,则ABC的面积等于()A.B.C.D.2(2015贵州安顺二模)若ABC的三个内角满足sin Asin Bsin C51113,则ABC()A一定是锐角三角形B一定是直角三角形C一定是钝角三角形D可能是锐角三角形,也可能是钝角三角形3在ABC中,已知b40,c20,C60,则此三角形的解的情况是()A有一解 B有两解C无解 D有解但解的个数不确定4(2014江西高考)在AB

2、C中,内角A,B,C所对的边分别是a,b,c.若c2(ab)26,C,则ABC的面积是()A3 B. C. D35(2015辽宁五校联考)设ABC的内角A,B,C所对边的长分别为a,b,c,若bc2a,3sin A5sin B,则角C()A. B. C. D.6(2015东北三校联考)已知ABC的内角A,B,C的对边分别为a,b,c,且,则B()A. B. C. D.二、填空题7(2014湖北高考)在ABC中,角A,B,C所对的边分别为a,b,c.已知A,a1,b,则B _.8(2015苏北四市联考)在ABC中,已知AB3,A120,且ABC的面积为,则BC边的长为_9(2015云南第一次检测

3、)已知a,b,c分别为ABC三个内角A,B,C的对边,若cos B,a10,ABC的面积为42,则b的值等于_10(2015广东重点中学联考)在ABC中,内角A,B,C的对边分别为a,b,c,已知,则的值为_三、解答题11在ABC中,角A,B,C所对的边分别是a,b,c.已知(b2a)cos Cccos B0.(1)求C;(2)若c,b3a,求ABC的面积12(2015江西七校联考)已知在ABC中,C2A,cos A,且227.(1)求cos B的值;(2)求AC的长度B卷:增分提能1(2014陕西高考)ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin

4、 Asin C2sin(AC);(2)若a,b,c成等比数列,求cos B的最小值2(2015洛阳统考)在ABC中,角A,B,C所对的边分别为a,b,c,cos 2C2cos C20.(1)求角C的大小;(2)若ba,ABC的面积为sin Asin B,求sin A及c的值3(2015湖北部分重点中学联考)在ABC中,a,b,c分别为内角A,B,C所对边的边长,且C,abc(其中1)(1)若时,证明:ABC为直角三角形;(2)若2,且c3,求的值答 案A卷:夯基保分1选B由正弦定理得sin B2sin Acos B,故tan B2sin A2sin,又B(0,),所以B,又AB,则ABC是正三

5、角形,所以SABCbcsin A11.2选C由正弦定理2R(R为ABC外接圆半径)及已知条件sin Asin Bsin C51113,可设a5x,b11x,c13x(x0)则cos C1.角B不存在,即满足条件的三角形不存在4选C由c2(ab)26,可得a2b2c22ab6.由余弦定理及C,可得a2b2c2ab.所以由得2ab6ab,即ab6.所以SABCabsin6.5选A因为3sin A5sin B,所以由正弦定理可得3a5b.因为bc2a,所以c2aaa.令a5,b3,c7,则由余弦定理c2a2b22abcos C,得49259235cos C,解得cos C,所以C.6选C根据正弦定理

6、:2R,得,即a2c2b2ac,得cos B,故B,故选C.7解析:由正弦定理,得sin B,又B,且ba,所以B或.答案:或8解析:由SABC得3ACsin 120,所以AC5,因此BC2AB2AC22ABACcos 12092523549,解得BC7.答案:79解析:依题可得sin B,又SABCacsin B42,则c14.故b6,所以bb16.答案:1610解析:由正弦定理得,即(cos A3cos C)sin B(3sin Csin A)cos B,化简可得,sin(AB)3sin(BC),又知ABC,所以sin C3sin A,因此3.答案:311解:(1)由已知及正弦定理得:(s

7、in B2sin A)cos Csin Ccos B0,sin Bcos Ccos Bsin C2sin Acos C,sin(BC)2sin Acos C,sin A2sin Acos C.又sin A0,得cos C.又C(0,),C.(2)由余弦定理得:c2a2b22abcos C,解得a1,b3.故ABC的面积Sabsin C13.12解:(1)C2A,cos Ccos 2A2cos2A1,sin C,sin A.cos Bcos(AC)sin Asin Ccos Acos C.(2),ABBC.227,cos B,|24,BC4,AB6,AC 5.B卷:增分提能1解:(1)证明:a,

8、b,c成等差数列,ac2b.由正弦定理得sin Asin C2sin B.sin Bsin(AC)sin(AC),sin Asin C2sin(AC)(2)a,b,c成等比数列,b2ac.由余弦定理得cos B,当且仅当ac时等号成立cos B的最小值为.2解:(1)cos 2C2cos C20,2cos2C2cos C10,即(cos C1)20,cos C.又C(0,),C.(2)c2a2b22abcos C3a22a25a2,ca,即sin Csin A,sin Asin C.SABCabsin C,且SABCsin Asin B,absin Csin Asin B,sin C,由正弦定理得:2sin C,解得c1.3解:(1)证明:,abc,由正弦定理得sin Asin Bsin C,C,sin Bsin,sin Bcos Bsin B,sin Bcos B,则sin,从而B或B,B或B.若B,则A,ABC为直角三角形;若B,ABC亦为直角三角形(2)若2,则ab2,ab2.又ab3,由余弦定理知a2b2c22abcos C,即a2b2abc29,即(ab)23ab9,故9229,29,24,即2.- 7 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3