1、课时质量评价(七)(建议用时:45分钟)A组全考点巩固练1函数f (x)|x2|x的单调递减区间是()A1,2B1,0C0,2D2,)A解析:由于f (x)|x2|x结合图象(图略)可知函数的单调递减区间是1,22(多选题)下列函数中,在区间(0,)上单调递增的是()Ayln(x2)ByCyDyxAB解析:函数yln(x2)的增区间为(2,),所以在(0,)上单调递增;函数y的增区间为1,所以在(0,)上单调递增3若函数f (x)x22xm在3,)上的最小值为1,则实数m的值为()A3 B2 C1 D1B解析:因为f (x)(x1)2m1在3,)上单调递增,且f (x)在3,)上的最小值为1,
2、所以f (3)1,即22m11,m2.故选B4若函数f (x)ax1在R上单调递减,则函数g(x)a(x24x3)的单调递增区间是()A(2,)B(,2)C(4,)D(,4)B解析:因为f (x)ax1在R上单调递减,所以a0. 而g(x)a(x24x3)a(x2)2a. 因为a0,所以g(x)的单调递增区间是(,2)5已知函数f (x)是定义在区间0,)上的函数,且在该区间上单调递增,则满足f (2x1)f 的x的取值范围是()A B C DD解析:因为函数f (x)是定义在区间0,)上的增函数,且f (2x1)f ,所以02x1,解得x.6已知函数f (x)在R上单调递减,且a33.1,b
3、,cln,则f (a),f (b),f (c)的大小关系为()Af (a)f (b)f (c)Bf (b)f (c)f (a)Cf (c)f (a)f (b)Df (c)f (b)f (a)D解析:因为a33.1301,0b1,clnln 10,所以cba.又因为函数f (x)在R上单调递减,所以f (c)f (b)f (a)故选D7若f (x)在区间(2,)上单调递增,则实数a的取值范围是_(,3)解析:f (x)1,要使函数f (x)在区间(2,)上单调递增,需使a30,解得a0,即a1,因此g(x)的单调递减区间就是y|x2|的单调递减区间(,29定义在R上的奇函数yf (x)在(0,)
4、上单调递增,且f 0,则不等式f (logx)0的解集为_解析:由题意知,f f 0,f (x)在(,0)上也单调递增,所以f (logx) f 或f (logx) f ,所以logx或logx0,解得0x或1x0时,f (x)1.(1)求f (0)的值,并证明f (x)在R上是增函数;(2)若f (1)1,解关于x的不等式f (x22x)f (1x)4.解:(1)令xy0,得f (0)1.在R上任取x1x2,则x1x20,f (x1x2)1.又f (x1)f (x1x2)x2)f (x1x2)f (x2)1f (x2),所以函数f (x)在R上是增函数(2)由f (1)1,得f (2)3,f
5、 (3)5.由f (x22x)f (1x)4,得f (x2x1)f (3)又函数f (x)在R上是增函数,故x2x13,解得x1.故原不等式的解集为x|x1B组新高考培优练11若函数y在x|1|x|4,xR上的最大值为M,最小值为m,则Mm()AB2 C DA解析:可令|x|t,则1t4,y,易知y在1,4上单调递增,所以其最小值为110;最大值为2.所以m0,M,则Mm.故选A12(2020山东师范大学附中月考)已知函数f (x)是定义在R上的奇函数,当x1x2时,有f (x1)f (x2)(x1x2)0,则x的取值范围是_(,1)解析:根据已知条件,当x1x2时,有f (x1)f (x2)(x1x2)0等价于f (3x1)f (2)f (2),所以3x12,即x0恒成立,试求实数a的取值范围解:(1)当a时,f (x)x2,任取1x1x2,则f (x1)f (x2)(x1x2).因为1x11,所以2x1x210.又x1x20,所以f (x1)0恒成立,所以等价于a大于函数(x)(x22x)在1,)上的最大值因为(x)(x1)21在1,)上单调递减,所以当x1时,(x)取最大值为(1)3,所以a3.故实数a的取值范围是(3,)