1、课时跟踪检测(四十二)空间点、直线、平面之间的位置关系一抓基础,多练小题做到眼疾手快1“点P在直线m上,m在平面内”可表示为()APm,mBPm,mCPm,m DPm,m解析:选B点在直线上用“”,直线在平面上用“”,故选B.2空间四边形两对角线的长分别为6和8,所成的角为45,连接各边中点所得四边形的面积是()A6 B12C12 D24解析:选A如图,已知空间四边形ABCD,对角线AC6,BD8,易证四边形EFGH为平行四边形,EFG或FGH为AC与BD所成的45角,故S四边形EFGH34sin 456,故选A.3若直线上有两个点在平面外,则()A直线上至少有一个点在平面内B直线上有无穷多个
2、点在平面内C直线上所有点都在平面外D直线上至多有一个点在平面内解析:选D根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内4如图,平行六面体ABCD A1B1C1D1中既与AB共面又与CC1共面的棱有_条解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条答案:55(2016济南一模)在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为_解析:如
3、图,设ACBDO,连接VO,因为四棱锥VABCD是正四棱锥,所以VO平面ABCD,故BDVO.又四边形ABCD是正方形,所以BDAC,又VOACO,所以BD平面VAC,所以BDVA,即异面直线VA与BD所成角的大小为.答案:二保高考,全练题型做到高考达标1空间四边形的两条对角线互相垂直,顺次连接四边中点的四边形一定是 ()A空间四边形B矩形C菱形 D正方形解析:选B顺次连接空间四边形四边中点的四边形是平行四边形,又因为空间四边形的两条对角线互相垂直,所以平行四边形的两邻边互相垂直,故顺次连接四边中点的四边形一定是矩形2(2016浙江金丽衢十二校二联)已知a,b,c为三条不同的直线,且a平面,b
4、平面,c.若a与b是异面直线,则c至少与a,b中的一条相交;若a不垂直于c,则a与b一定不垂直;若ab,则必有ac;若ab,ac,则必有.其中正确的命题的个数是()A0 B1C2 D3解析:选C中若a与b是异面直线,则c至少与a,b中的一条相交,故正确;中平面平面时,若bc,则b平面,此时不论a,c是否垂直,均有ab,故错误;中当ab时,则a平面,由线面平行的性质定理可得ac,故正确;中若bc,则ab,ac时,a与平面不一定垂直,此时平面与平面也不一定垂直,故错误,所以正确命题的个数是2.3(2016福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p是q的()A充分不必要条
5、件B必要不充分条件C充分必要条件D既不充分也不必要条件解析:选A若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.4如图,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线 BA,M,O,A1不共面CA,M,C,O不共面 DB,B1,O,M共面解析:选A连接A1C1,AC,则A1C1AC,所以A1,C1,C,A四点共面,所以A1C平面ACC1A1,因为MA1C,所以M平面ACC1A1,又M平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB
6、1D1的交线上,所以A,M,O三点共线5已知正四棱柱ABCD A1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于()A BC D解析:选A如图所示,因为BD平面ACC1A1,所以平面ACC1A1平面BDC1.在RtCC1O中,过C作CHC1O于H,连接DH,则CDH即为所求令ABa,显然CHa,所以sinCDH,即CD与平面BDC1所成角的正弦值为.6如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为_对解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB
7、与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行故互为异面的直线有且只有3对答案:37(2016福建六校联考)设a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线上述命题中正确的命题是_(写出所有正确命题的序号)解析:由公理4知正确;当ab,bc时,a与c可以相交、平行或异面,故错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故错;a,b,并不能说明a与b“不同在任何一个平面内”,故错答案:8(2015浙江高考)如图,在三棱锥ABCD中
8、,ABACBDCD3,ADBC2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是_解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.M为AD的中点,MKAN,KMC为异面直线AN,CM所成的角ABACBDCD3,ADBC2,N为BC的中点,由勾股定理易求得ANDNCM2,MK.在RtCKN中,CK .在CKM中,由余弦定理,得cosKMC.答案:9已知A是BCD所在平面外的一点,E,F分别是BC,AD的中点,(1)求证:直线EF与BD是异面直线;(2)若ACBD,ACBD,求EF与BD所成的角解:(1)证明:假设EF与BD不是异面直线,则EF与BD共面,从而
9、DF与BE共面,即AD与BC共面,所以A,B,C,D在同一平面内,这与A是BCD所在平面外的一点相矛盾故直线EF与BD是异面直线(2)取CD的中点G,连接EG,FG,则EGBD,所以相交直线EF与EG所成的角,即为异面直线EF与BD所成的角在RtEGF中,由EGFGAC,求得FEG45,即异面直线EF与BD所成的角为45.10如图所示,在三棱锥P ABC中,PA底面ABC,D是PC的中点已知BAC,AB2,AC2,PA2.求:(1)三棱锥P ABC的体积;(2)异面直线BC与AD所成角的余弦值解:(1)SABC222,故三棱锥P ABC的体积为VSABCPA22.(2)如图所示,取PB的中点E
10、,连接DE,AE,则DEBC,所以ADE(或其补角)是异面直线BC与AD所成的角在ADE中,DE2,AE,AD2,则cosADE.即异面直线BC与AD所成角的余弦值为.三上台阶,自主选做志在冲刺名校1.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,GH与EF平行;BD与MN为异面直线;GH与MN成60角;DE与MN垂直以上四个命题中,正确命题的序号是_解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60角,DEMN.答案:2如图所示,三棱柱ABC A1B1C1,底面是边长为2的正三角形,侧棱A1A底面ABC,点E,
11、F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC2FB2.(1)当点M在何位置时,BM平面AEF?(2)若BM平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值解:(1)法一:如图(1)所示,取AE的中点O,连接OF,过点O作OMAC于点M.因为侧棱A1A底面ABC,所以侧面A1ACC1底面ABC.又因为EC2FB2,所以OMFBEC且OMECFB,所以四边形OMBF为矩形,BMOF.因为OF平面AEF,BM平面AEF,故BM平面AEF,此时点M为AC的中点法二:如图(2)所示,取EC的中点P,AC的中点Q,连接PQ,PB,BQ.因为EC2FB2,所以PE綊BF,所以PQAE,PBEF,所以PQ平面AFE,PB平面AEF,因为PBPQP,PB,PQ 平面PBQ,所以平面PBQ平面AEF.又因为BQ平面PBQ,所以BQ平面AEF.故点Q即为所求的点M,此时点M为AC的中点(2)由(1)知,BM与EF异面,OFE(或MBP)就是异面直线BM与EF所成的角或其补角易求AFEF,MBOF,OFAE,所以cosOFE,所以BM与EF所成的角的余弦值为.