1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。考点综合提升练4(范围:2.3)限时60分钟分值100分战报得分_一、选择题(每小题5分,共30分,在每小题给出的选项中,只有一个正确选项)1已知集合Mx|x23x280,Nx|x2x60,则MN为()Ax|4x2或3x7Bx|4x2或3x3Dx|x0x|x3,所以MNx|4x2或3x72已知一元二次方程x2mx10的两根都在x|0x2内,则实数m的取值范围是()Am2或m2 Bm2Cm2 Dm2【解析】选C.因为一元二次方程x2mx10的两根都在x|0x2内,令yx2m
2、x1,所以,求得m2,则实数m的取值范围为m2.3要使函数ymx2mx(m1)的值恒为负值,m的取值范围为()Am0 Bm0或mCm0或m Dm0【解析】选D.由题设知:当m0时,y10符合题意;当m0时,由题意得:,解得:m0,综合得:m0.4若关于x的不等式x2mx2m30有解,则实数m的取值范围是()A2m6 Bm6或m2C2m6或m2【解析】选B.因为关于x的不等式x2mx2m30有解,所以方程x2mx2m30有实根,所以0,即m24(2m3)0,解得m2或m6,所以实数m的取值范围是:m6或m2.5(金榜原创题)若不等式ax2bx2 0210的解集为x|43x0的解集为()Ax|43
3、x47或x0的解集为.6不等式x2pxq0的解集是x|2x0的解是()ABCD【解析】选B.易知方程x2pxq0的两个根是2,3.由根与系数的关系得解得不等式qx2px10为6x25x10,解得x.二、选择题(每小题5分,共10分,在每小题给出的选项中,有多项符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得3分)7已知aZ,关于x的一元二次不等式x26xa0的解集中有且仅有3个整数,则a的值可以是()A4 B5 C6 D7【解析】选CD.设yx26xa,其图象为开口向上,对称轴是x3的抛物线,如图所示若关于x的一元二次不等式x26xa0的解集中有且仅有3个整数,因为对称轴为x3,
4、所以,解得5a8,又aZ,故a可以为6,7,8.8若不等式x22x30对xx|axa2恒成立,则实数a的值可能为()A2 B1 C D2【解析】选BC.解不等式x22x30得:1x3,因为不等式x22x30对xx|axa2恒成立,所以x|axa2x|1x3,所以所以1a1.结合选项,实数a的值可能为1,.三、填空题(每小题5分,共20分)9已知yax2bxc过A(3,4),B(5,4),则2ab_【解析】图象过A,B两点,可知该函数一定是二次函数,对称轴方程为x1,所以b2a,b2a0.答案:010若关于x的方程x23axa210有两个实数根x1,x2,且0x11x2,则实数a的取值范围为_【
5、解析】由题意得5a24,0x11,x21,联立解得:1a3.答案:1a311根据以往数据统计发现,某大型商场中秋节前30天内,前t天的月饼销售总量f(t)大致满足y2t1(0t30)(单位:百斤),则该商场前t天内平均每天售出的月饼量最少约为_百斤【解析】该商场前t天平均售出的斤数为:2222,当且仅当,即t10时取等号,故平均售出的斤数最少为.答案:12关于x的不等式x2mxm20对2x4恒成立,则m的取值范围为_【解析】设函数yx2mxm2,则对称轴为x,当2,即m4时,则,解得2m6,又因为m4,所以无解;当24,即4m8时,则(m)24(m2)0,解得22m22,又因为4m8,所以22
6、m22;当4,即m8时,则,解得2m6,又因为m8,所以无解;综上所述,m的取值范围为:22m22.答案:22m22四、解答题(每小题10分,共40分)13已知不等式ax24x36的解集为x|x1或xb(1)求a,b;(2)若c3,解不等式ax2a(bc)xbc0.【解析】(1)由不等式ax24x36的解集为x|x1或xb,所以方程ax24x36的解为x1或xb且b1,所以,解得或(不合题意,舍去);所以a1,b3.(2)由a1,b3,则原不等式为x2(c3)x3c0,可化为(x3)(xc)0;又c3,所以不等式的解集为x|3xc14已知关于x的不等式:2kx2kx30.(1)若不等式的解集为
7、,求k的值;(2)若不等式的解集为R,求k的取值范围【解析】(1)因为关于x的不等式:2kx2kx30的解集为,所以和1是方程2kx2kx30的两个实数根,由根与系数的关系可得:1,得k1.(2)因为关于x的不等式2kx2kx30的解集为R.当k0时,30恒成立当k0时,由解得:24k0,故k的取值范围为k|24k015已知二次函数yax2bxc的图象与x轴交于点(1,0)和(2,0),与y轴交于点(0,2).(1)求二次函数的解析式;(2)若xx|x1时,y2x2(t3)x6恒成立,求实数t的取值范围【解析】(1)因为二次函数yax2bxc的图象与x轴交于点(1,0)和(2,0),与y轴交于
8、点(0,2),所以,解得a1,b3,c2,所以二次函数的解析式为yx23x2.(2)因为xx|x1时,y2x2(t3)x6恒成立,即tx对任意xx|x1恒成立,因为x24,当且仅当x2时取等号,所以t4,所以实数t的取值范围是t4.16已知关于x的方程x22(m2)xm240有实数根(1)若两根的平方和比两根之积大21,求实数m的值;(2)若两根均大于1,求实数m的取值范围【解析】(1)因为关于x的方程x22(m2)xm240有实数根,两根的平方和比两根之积大21,故有,即,求得m1.(2)若方程x22(m2)xm240的两根均大于1,令yx22(m2)xm240,则,求得m0且m1.关闭Word文档返回原板块