1、解答题规范专练(二)三角函数、解三角形1(2015开封一摸)已知函数f(x)4cos xsin1.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最值2(2015新乡调研)在ABC中,cos A,tan B.(1)求角C的大小;(2)若ABC的外接圆半径为1,求ABC的面积3(2015大庆二检)已知函数f(x)sin 2xcos2x.(1)求f(x)的单调递增区间;(2)设ABC的内角A,B,C的对边分别为a,b,c,且c,f(C)0,若sin B2sin A,求a,b的值答 案1解:(1)f(x)4cos xsin14cos x1sin 2x2cos2x1sin 2xcos 2x2s
2、in,f(x)的最小正周期T.(2)x,2x,当2x,即x时,f(x)maxf2,当2x,即x时,f(x)minf1.2解:(1)cos A,0A,sin A,tan B,0B,由且 sin2Bcos2B1,cos B,sin B.cos Ccos(AB)cos(AB)sin Asin Bcos Acos B.C,C.(2)根据正弦定理2R(R为外接圆半径)得a2Rsin A,b2Rsin B.由面积公式得SABCabsin C.3解:(1)f(x)sin 2xcos2xsin 2xsin 2xcos 2x1sin1.由2k2x2k,kZ,得kxk,kZ,函数f(x)的单调递增区间为(kZ)(2)由f(C)0,得sin1,0C,2C,2C,C,又sin B2sin A,由正弦定理,得2.由余弦定理,得c2a2b22abcos,即a2b2ab3,由解得a1,b2.