收藏 分享(赏)

2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc

上传人:高**** 文档编号:995331 上传时间:2024-06-03 格式:DOC 页数:7 大小:58KB
下载 相关 举报
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第1页
第1页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第2页
第2页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第3页
第3页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第4页
第4页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第5页
第5页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第6页
第6页 / 共7页
2021-2022高中数学人教版选修2-2作业:2-3数学归纳法 (二) WORD版含解析.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.3数学归纳法基本练习夯基一、选择题1(2015海南市文昌中学高二期中)用数学归纳法证明1(nN),在验证n1时,左边的代数式为()A. B.C.D1答案A解析在1(nN)中,当n1时,3n14,故n1时,等式左边的项为:,故选A.2(2015郑州市登封高二期中)用数学归纳法证明1aa2an1(nN*,a1),在验证n1时,左边所得的项为()A1B1aa2C1aD1aa2a3答案B解析因为当n1时,an1a2,所以此时式子左边1aa2.故应选B.3(2015承德市存瑞中学高二期中)用数学归纳法证明123252(2n1)2n(4n21)过程中,由nk递推到nk1时,不等式左边增加的项为()A(

2、2k)2B(2k3)2C(2k2)2D(2k1)2答案D解析用数学归纳法证明123252(2n1)2n(4n21)的过程中,第二步,假设nk时等式成立,即123252(2k1)2k(4k21),那么,当nk1时,123252(2k1)2(2k1)2k(4k21)(2k1)2,等式左边增加的项是(2k1)2,故选D.4对于不等式n1(nN),某学生的证明过程如下:(1)当n1时,11,不等式成立(2)假设nk(kN)时,不等式成立,即k1,则nk1时,n2Bn3时,2nn2Cn4时,2nn2Dn5时,2nn2答案D解析当n1时,2112,即2nn2;当n2时,2222,即2nn2;当n3时,23

3、32,即2n52,即2nn2;当n6时,2662,即2nn2;猜想当n5时,2nn2;下面我们用数学归纳法证明猜测成立,(1)当n5时,由以上可知猜想成立,(2)设nk(k5)时,命题成立,即2kk2,当nk1时,2k122k2k2k2k2k2(2k1)(k1)2,即nk1时,命题成立,由(1)和(2)可得n5时,2nn2;故当n2或4时,2nn2;n3时,2nn2.故选D.点评此题考查的知识点是整数问题的综合应用,解答此题的关键是从特例入手猜测探究,然后用数学归纳法证明猜测成立12设凸k边形的内角和为f(k),则凸k1边形的内角和f(k1)f(k)_.()A2BC.D答案B解析将k1边形A1

4、A2AkAk1的顶点A1与Ak相连,则原多边形被分割为k边形A1A2Ak与三角形A1AkAk1,其内角和f(k1)是k边形的内角和f(k)与A1AkAk1的内角和的和,故选B.13(20142015揭阳一中高二期中)用数学归纳法证明“n3(n1)3(n2)3(nN*)能被9整除”,要利用归纳假设证nk1时的情况,只需展开()A(k3)3B(k2)3C(k1)3D(k1)3(k2)3答案A解析因为从nk到nk1的过渡,增加了(k1)3,减少了k3,故利用归纳假设,只需将(k3)3展开,证明余下的项9k227k27能被9整除14(2014合肥一六八中高二期中)观察下列各式:已知ab1,a2b23,

5、a3b34,a4b47,a5b511,则归纳猜测a7b7()A26B27C28D29答案D解析观察发现,134,347,4711,71118,111829,a7b729.二、填空题15用数学归纳法证明“2n1n2n2(nN*)”时,第一步的验证为_答案当n1时,左边4,右边4,左右,不等式成立解析当n1时,左右,不等式成立,nN*,第一步的验证为n1的情形16对任意nN*,34n2a2n1都能被14整除,则最小的自然数a_.答案5解析当n1时,36a3能被14整除的数为a3或5,当a3时且n3时,31035不能被14整除,故a5.三、解答题17在平面内有n条直线,其中每两条直线相交于一点,并且

6、每三条直线都不相交于同一点求证:这n条直线将它们所在的平面分成个区域证明(1)n2时,两条直线相交把平面分成4个区域,命题成立(2)假设当nk(k2)时,k条直线将平面分成块不同的区域,命题成立当nk1时,设其中的一条直线为l,其余k条直线将平面分成块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k1段,每段都将它所在的区域分成两部分,故新增区域k1块从而k1条直线将平面分成k1块区域所以nk1时命题也成立由(1)(2)可知,原命题成立18(1)用数学归纳法证明:12223242(1)n1n2(1)n1(nN*)(2)求证:12223242(2n1)2(2n)2n(2n1

7、)(nN*)解析(1)当n1时,左边121,右边(1)01,左边右边,等式成立假设nk(kN*)时,等式成立,即12223242(1)k1k2(1)k1.则当nk1时,12223242(1)k1k2(1)k(k1)2(1)k1(1)k(k1)2(1)k(k1)(1)k.当nk1时,等式也成立,根据、可知,对于任何nN*等式成立(2)n1时,左边12223,右边3,等式成立假设nk时,等式成立,即12223242(2k1)2(2k)2k(2k1)2.当nk1时,12223242(2k1)2(2k)2(2k1)2(2k2)2k(2k1)(2k1)2(2k2)2k(2k1)(4k3)(2k25k3)(k1)2(k1)1,所以nk1时,等式也成立由得,等式对任何nN*都成立

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3