收藏 分享(赏)

2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc

上传人:高**** 文档编号:991448 上传时间:2024-06-03 格式:DOC 页数:5 大小:111.50KB
下载 相关 举报
2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc_第1页
第1页 / 共5页
2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc_第2页
第2页 / 共5页
2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc_第3页
第3页 / 共5页
2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc_第4页
第4页 / 共5页
2021-2022高中数学人教版必修5教案:3-3-1 二元一次不等式(组)与平面区域 (系列三) WORD版含答案.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、二元一次不等式(组)与平面区域【教学目标】1初步体会从实际情景中抽象出二元一次不等式组的过程。2了解二元一次不等式(组)的相关概念,并能画出二元一次不等式(组)表示的平面区域。3培养学生观察、分析数学图形的能力,在问题的解决中渗透集合、化归、数形结合的数学思想。【重点与难点】(1)重点:探究、运用二元一次不等式(组)来表示平面区域。(2)难点:如何确定不等式Ax+By+C0(或0)表示直线Ax+By+C=0的那一侧区域。【教学准备】教具:直尺、多媒体设备。【教学过程】 (一)创设问题情景,激发学生兴趣问题1:为了按期完成“鸟巢”工程的建设,根据发改委要求,工程每天至少需要浇铸60根钢柱。已知负

2、责生产的首钢、鞍钢分别只有4个和6个车间有能力浇铸此型钢柱,但其中至多只有8个车间可同时投入生产。首钢和鞍钢每个车间每天分别能完成10根和8根钢柱的浇铸。问两厂每天最多能浇铸多少钢柱?最少需要多少个车间?上述关系如下表:生产车间数日生产量首钢车间投入生产不超过410鞍钢车间投入生产不超过68总车间数不超过8个日生产量至少60根解:设首钢有x个车间投入生产,鞍钢有y个车间投入生产,根据题意,列出不等式组: 0x40y6x+y8 (x,yN)10x+8y60列出不等式组之后,对不等式(组)解释,满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为

3、二元一次不等式(组)的解集,有序实数对可以看作是直角坐标系平面内点的坐标,于是二元一次不等式(组)的解集就可以看成直角坐标系内点构成的集合。(二)探究二元一次不等式表示的平面区域问题2:二元一次不等式x+y8在平面直角坐标系下表示什么区域?围绕问题2师生展开如下活动。活动一:由数到形【教师演示】运用多媒体进行动态展示:在平面直角坐标系中,所有的点被直线xy8=0分成三类:即在直线xy8=0上;直线左下方的平面区域;直线右上方的平面区域。【学生尝试】设点P(x,y1)是直线l上的点,选取点A(x,y2)使它的坐标满足x+y8,填写下表:横坐标x3210123点P的纵坐标y1点A的纵坐标y2在坐标

4、系中将满足不等式的解所对应的点A描绘到坐标系下,通过对其位置进行分析,归纳猜想得出相应结论。【学生猜想】以x+y80的解为坐标的点都在直线x+y8=0的右上方。【共同归纳】一般地,AxByC0(0)在平面直角坐标系中表示直线AxByC=0某一侧所有点组成的平面区域提醒注意:我们把直线画成虚线以表示区域不包括边界直线画不等式AxByC0则把边界直线画成实线活动二:由形到数【学生尝试】让学生尝试在直线xy8=0的右上方多取若干点,自动计算xy8的值,发现都是大于零。【教师演示】教师借助多媒体在直线x+y80的一侧任意取一点A(x,y)的坐标进行跟踪显示,并将点A(x,y)的坐标代入xy8中,由学生

5、计算,观察所得值的符号,并归纳发现在直线xy80的同一侧的点都满足不等式xy80(或0)。从而使二元一次不等式的解与平面区域的对应关系的理论体系更加完备。【共同证明】如何完成从特殊到一般的证明?分析:在直线xy8=0的右上方任取一点A(xA,yA),为了与直线xy8=0的点发生联系,不妨过A点作与x轴垂直的直线交直线xy1=0于P(xp,yp)点。则有xA= xp ,yAyp,所以xAyA8xpyp8=0 。所以对于在直线xy8=0的右上方任一点A(x,y)都有 xy80。同理可得,在直线xy8=0的左上方任一点都能使xy80成立。【师生归纳】由于对直线AxByC=0同一侧的所有点(x,y),

6、把它的坐标(x,y)代入AxByC,所得到实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0By0C的正负即可判断AxByC0表示直线哪一侧的平面区域。特别地,当C0时,常把原点作为此特殊点。(三)例题,练习例1画出不等式 2x+y-60 表示的平面区域。(将具体的知识形成方法和技能,讨论定域方法和画图的注意事项。)练习(一)画出以下不等式表示的平面区域 练习(二)画出以下不等式组表示得平面区域练习(三)绘制由“鸟巢”问题得出的不等式组表示的区域并解答。问题解答如图:有六种投入的生产方案,它们分别是(2,5),(2,6),(3,4),(3,5)(4,3),(4,4)计算可得,最多可浇铸72根钢柱,最少要用7个车间。(四)小结(1)如何作出一元二次不等式(组)表示平面区域?(2)本节课渗透了什么样的数学思想方法?小结内容:认识了二元一次不等式(组)与其平面区域的对应关系,体会到了数形结合思想的应用。(五)布置作业:1.课本P106习题3.3A组1、2,B组1。2.拓展与提高:B组2。331二元一次不等式(组)与平面区域1从实际问题中建立 2探究二元一次不等式表示的区域 4练习(一)不等关系 3判定所示区域的方法 练习(二) 直线定界,测试点定域 解决实例(六)板书设计【教学反思】。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3