1、菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)第二节 二元一次不等式(组)与简单的线性规划问题菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1二元一次不等式表示平面区域在平面直角坐标系中,平面内所有的点被直线AxByC0分成三类:(1)满足AxByC_0的点;(2)满足AxByC_0的点;(3)满足AxByC_0的点菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)2二元一次不等式表示平面区域的判断方法直线l:AxByC0把坐标平面内不在直线l上的点分为两部分,当点在直线l的同一侧时,点的坐
2、标使式子AxByC的值具有_的符号,当点在直线l的两侧时,点的坐标使AxByC的值具有_的符号相同相反菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)3线性规划中的基本概念名称意义线性约束条件由x,y的_不等式(或方程)组成的不等式(组)线性目标函数关于x,y的_解析式可行解满足线性约束条件的解_可行域所有可行解组成的_最优解使目标函数取得_或_的可行解线性规划问题在线性约束条件下求线性目标函数的_或_问题一次一次(x,y)最大值最小值最大值最小值集合菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1可行解与最优解有何关系?最
3、优解是否唯一?【提示】最优解必定是可行解,但可行解不一定是最优解最优解不一定唯一,有时唯一,有时有多个2点P1(x1,y1)和P2(x2,y2)位于直线AxByC0的两侧的充要条件是什么?【提示】(Ax1By1C)(Ax2By2C)0.菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1(人教A版教材习题改编)如果点(1,b)在两条平行直线6x8y10和3x4y50之间,则b应取的整数值为()A2B1C3D0【答案】B菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【解析】可行域如图中阴影部分所示先画出直线l0:y3x,平移直线
4、l0,当直线过A点时z3xy的值最大,菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】B菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【解析】不等式组表示的区域如图中的阴影部分所示,菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】1菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【解析】作不等式组表示的可行域,如图所示,作直线l0:3xy0,并上下平移当直线过点A、B时,z分别取得最大值、最小值菜单课后作业典例探究提知能自主落实固基础高考体验
5、明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)函数y2x的图象上存在点(x,y)满足约束条件,故m的最大值为1.【答案】B菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用
6、)【审题视点】明确目标函数z的几何意义,数形结合找最优解,代入求值菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】A菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)某企业生产A,B两种产品,生产每
7、一吨产品所需的劳动力、煤和电耗如下表:产品品种劳动力(个)煤(吨)电(千瓦)A产品394B产品1045菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?【审题视点】题目的设问是“该企业如何安排生产,才能获得最大利润”,这个利润是由两种产品的利润所决定的,因此A,B两种产品的生产数量决定着该企业的总利润,故可以设出A、B两种产品的生产数量,列不等式组和建立目标函数菜单课后作业典
8、例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【尝试解答】设生产A,B两种产品分别为x吨,y吨,利润为z万元,依题意,得目标函数为z7x12y.作出可行域,如图阴影所示菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)当直线7x12y0向右上方平行移动时,经过M时z取最大值因此,点M的坐标为(20,24)该企业生产A,B两种产品分别为20吨和24吨时,才能获得最大利润菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1求解本题的关键是找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题为寻找各量之
9、间的关系,最好是列出表格2解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答3在确定整点最优解时,可先找到使目标函数取得最值的非整点最优解,然后结合目标函数解析式的结构特点,来确定最优解菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)(2012江西高考改编)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜6吨0.9万元0.3万元菜单课后作业典
10、例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)为使一年的种植总利润(总利润总销售收入总种植成本)最大,求黄瓜和韭菜的种植面积(单位:亩)分别是多少亩?【解】设种植黄瓜x亩,韭菜y亩,由题意得菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)设总利润为z,则zx0.9y.作可行域如图所示,得A(30,20)当目标函数线l向右平移,移至点A(30,20)处时,目标函数取得最大值,即当黄瓜种植30亩,韭菜种植20亩时,种植总利润最大黄瓜和韭菜分别种植30亩、20亩时,一年种植的总利润最大菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标
11、 理科数学(广东专用)确定二元一次不等式表示的平面区域的方法是“直线定界,特殊点定域”(1)直线定界:即若不等式不含等号,则应把直线画成虚线.若不等式含有等号,把直线画成实线(2)特殊点定域:当C0时,常把原点作为测试点;当C0时,常选点(1,0)或者(0,1)作为测试点菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)利用线性规划求最值的步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数求最值菜单课后作业典例探
12、究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)从近两年的高考试题来看,二元一次不等式(组)表示的平面区域,求线性目标函数的最值是高考命题的热点,难度中等偏下,主要考查可行域的画法、目标函数最值的求法、由最优解(可行域)情况确定参数的范围,以及数形结合的思想求解的常见错误是忽视题目的约束条件与目标函数的几何意义导致错误菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探
13、究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】C菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)错因分析:(1)忽视条件m1,没能准确判定直线l的斜率范围,导致错求最优解,从而错得实数m的取值范围(2)本题易出现不能正确画出可行域或错认为直线l过原点时,z取得最大值的错误防范措施:(1)审清题意,不能忽视参数取值的影响(2)对于题目中最值条件的确定至关重要,明确目标函数的最值与m的关系,且计算一定要准确,防止误选B、D的错误菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主
14、落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】A菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)1(2012天津高考)设变量x,y满足约束条件则目标函数z3x2y的最小值为()A5B4C2D3菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【解析】画出可行域,如图阴影部分所示,当目标函数线移至点A处时,目标函数取得最小值,且A(0,2),故zmin30224.【答案】B菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)【答案】2菜单课后作业典例探究提知能自主落实固基础高考体验明考情新课标 理科数学(广东专用)课后作业(三十七)