收藏 分享(赏)

2021-2022学年高中数学人教A版必修5教案:3-3-2简单的线性规划问题 1 WORD版含解析.doc

上传人:高**** 文档编号:985221 上传时间:2024-06-03 格式:DOC 页数:4 大小:156KB
下载 相关 举报
2021-2022学年高中数学人教A版必修5教案:3-3-2简单的线性规划问题 1 WORD版含解析.doc_第1页
第1页 / 共4页
2021-2022学年高中数学人教A版必修5教案:3-3-2简单的线性规划问题 1 WORD版含解析.doc_第2页
第2页 / 共4页
2021-2022学年高中数学人教A版必修5教案:3-3-2简单的线性规划问题 1 WORD版含解析.doc_第3页
第3页 / 共4页
2021-2022学年高中数学人教A版必修5教案:3-3-2简单的线性规划问题 1 WORD版含解析.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课题: 3.3.2简单的线性规划授课类型:新授课【教学目标】1知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。【教学过程】1.课题导入复习引入: 1、二元一次不等式Ax+By+C0在平面直角坐

2、标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:2.讲授新课线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:范例讲解例5 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳

3、水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元。那么开设初中班和高中班各多少个,每年收取的学费总额最高多?指出:资源数量一定,如何安排使用它们,使得效益最好,这是线性规划中常见的问题之一

4、结合上述两例子总结归纳一下解决这类问题的思路和方法:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解3.随堂练习课本第103页练习24.课时小结线性规划的两类重要实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数。然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解,最后,要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得

5、最优解。 5.评价设计课本第105页习题3.3A组的第3题课题: 3.3.2简单的线性规划第5课时授课类型:新授课【教学目标】1知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。【教学重点】利用图解法求得线性规划问题的最优解;【教学难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。【教学过程】1.

6、课题导入复习引入: 1、二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:3、用图解法解决简单的线性规划问题的基本步骤:2.讲授新课1线性规划在实际中的应用:例7 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?2课本第104页的“阅读与思考”错在哪里?若实数,满足 求4+2的取值范围错解:由、同向相加可求得: 024 即 0

7、48 由得 11将上式与同向相加得024 十得 04十212以上解法正确吗?为什么?(1)质疑引导学生阅读、讨论、分析(2)辨析通过讨论,上述解法中,确定的048及024是对的,但用的最大(小)值及的最大(小)值来确定4十2的最大(小)值却是不合理的X取得最大(小)值时,y并不能同时取得最大(小)值。由于忽略了x和 y 的相互制约关系,故这种解法不正确(3)激励产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解?正解:因为 4x+2y=3(x+y)+(x-y)且由已有条件有: (5) (6)将(5)(6)两式相加得 所以 3.随堂练习11、求的最大值、最小值,使、满足条件2、设,式中变量、满足 4.课时小结结论一线性目标函数的最大值、最小值一般在可行域的顶点处取得.结论二线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个5.评价设计课本第105页习题3.3A组的第4题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3