1、本作品版权由孙小明老师所有,授权予北京校园之星科技有限公司,任何机构或个人均不得擅自复制、传播。本公司热忱欢迎广大一线教师加入我们的作者队伍。有意者请登录高考资源网()版权所有,盗用必究!7.2直线的方程(二)一、教学目标1、知识目标:掌握直线方程的两点式和截距式2、能力目标:通过让学生经历直线方程的发现过程,以提高学生分析、比较、概括、化归的数学能力,使学生初步了解用代数方程研究几何问题的思路,培养学生综合运用知识解决问题的能力3、德育目标:(1)在教学中充分揭示“数”与“形”的内在联系,体会数、形的统一美,激发学生学习数学的兴趣,对学生进行对立统一的辩证唯物主义观点的教育,培养学生勇于探索
2、、勇于创新的精神(2)通过直线方程的几种形式培养学生的美学意识二、教材分析1重点:直线方程的两点式、截距式的推导2难点:直线方程的两点式、截距式的推导及运用三、活动设计分析、启发、诱导、讲练结合四、教学过程(一)创设情境应用直线方程的点斜式,求经过下列两点的直线方程:A(2,1),B(6,-3);A(0,5) B(5,0);,B( ,设计意图:本环节从学生利用上节课学过的直线的方程的点斜式,求过两已知点的直线的方程出发,让学生“悟”出学习两点式的必要性,同时也“悟”也两点式的推导方法,以此导入新课,目的在于学生既加深学过知识的理解,又为学习新知识奠定良好的基础(二)探究新知:1、直线方程的两点
3、式讲解第小题:利用直线的斜率公式求出斜率,然后利用点斜式写出直线方程为:由可以导出,这两者表示了直线的范围是不同的.后者表示范围缩小了.但后者这个方程的形式比较对称和美观,体现了数学美,同时也便于记忆及应用.所以采用后者作为公式,由于这个方程是由直线上两点确定的,所以叫做直线方程的两点式所以,当,时,经过B(的直线的两点式方程可以写成:探究1:哪些直线不能用两点式表示?答:倾斜角是或的直线不能用两点式公式表示探究2:若要包含倾斜角为或的直线,应把两点式变成什么形式?答:应变为的形式探究3:我们推导两点式是通过点斜式推导出来的,还有没有其他的途径来进行推导呢?答:有,利用同一直线上三点中任意两点
4、的斜率相等2直线方程的截距式定义:直线与轴交于一点(,0)定义为直线在轴上的截距;直线与y轴交于一点(0,)定义为直线在轴上的截距.在例1(4)中,得到过A(,0) B(0, )(,均不为0)的直线方程为,将其变形为: 以上直线方程是由直线在轴和轴上的截距确定的,所以叫做直线方程的截距式.有截距式画直线比较方便,因为可以直接确定直线与轴和轴的交点的坐标探究4:,表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?答:不是,它们可以是正,也可以是负,也可以为0.探究5:有没有截距式不能表示的直线?答:有,当截距为零时.故使用截距式表示直线时,应注意单独考虑这几种情形,分类讨论,防止遗漏 (三
5、)讲解范例:例1 求过下列两点的直线的两点式方程,再化为斜截式方程.(1)A(2,1),B(0,3);(2)A(4,5),B(0,0)(3)A(0,5),B(5,0);(4) A(,0) B(0, )(,均不为0)讲解见课本变式一: 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程本例题要在引导学生灵活选用方程形式、简化运算上多下功夫解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0这就是直线BC的方程由截距式方程得
6、AC的方程是即 2x+5y+10=0这就是直线AC的方程变式2 说出下列直线的方程,并画出图形.倾斜角为,在轴上的截距为0;在轴上的截距为5,在轴上的截距为6;在轴上截距是3,与轴平行;在轴上的截距是4,与轴平行.例2 过点P(2,1)作直线交正半轴于AB两点,当取到最小值时,求直线的方程.解:设直线的方程为: 令0解得;令0,解得A(,0),B(0,),当且仅当即时,取到最小值.又根据题意,所以直线的方程为:评述:此题在求解过程中运用了基本不等式,同时应注意结合直线与坐标轴正半轴相交而排除1的情形(四)课堂练习:(1)一直线被两直线:,:截得的线段的中点恰好是坐标原点,求该直线方程.解:设所
7、求直线与,的交点分别是A、B,设A(),则B点坐标为() 因为A、B分别在,上,所以 得:,即点A在直线上,又直线过原点,所以直线的方程为.(2)直线在轴上的截距是1,而且它的倾斜角是直线的倾斜角的2倍,则( )A. A,B1 B.A,B1C.A,B1D.A,B1解:将直线方程化成斜截式.因为1,B1,故否定A、D.又直线的倾斜角,直线的倾斜角为2,斜率-, A,B1,故选B(3)若直线通过第二、三、四象限,则系数A、B、C需满足条件( )A.A、B、C同号B.AC0,BC0 C.C0,AB0D.A0,BC0解法一:原方程可化为(B0)直线通过第二、三、四象限,其斜率小于0,轴上的截距小于0,
8、即0,且00,且0即A、B同号,B、C同号.A、B、C同号,故选A 解法二:(用排除法)若C0,AB0,则原方程化为.由AB0,可知0.此时直线经过原点,位于第一、三象限,故排除C.若A0,BC0,则原方程化为.由BC0,得0.此时直线与轴平行,位于轴上方,经过一、二象限.故排除D.若AC0,BC0,知A、C异号,B、C异号A、B同号,即AB0.此时直线经过第一、二、四象限,故排除B.故A、B、C同号,应选A(五)小结 通过列表从名称、形式、已知条件、使用范围、示意图等方面对所学的直线方程的四种形式(点斜式、斜截式、两点式、截距式)进行填表比较:直线名称已知条件直线方程使用范围示意图点斜式斜截
9、式两点式(截距式(六)课后作业:1、求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1)2、直线(0)的图象是( ) 解法一:由已知,直线的斜率为,在轴上的截距为又因为0.与互为相反数,即直线的斜率及其在轴上的截距互为相反数图A中,0,0;图B中,0,0;图C中,0,0故排除A、B、C.选D. 解法二:由于所给直线方程是斜截式,所以其斜率0,于是令0,解得.又因为0,直线在轴上的截距为1,由此可排除A、B、C,故选D (七)板书设计7.2 直线的方程(2)1.直线方程的两点式2直线方程的截距式例1例2反馈练习