收藏 分享(赏)

2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc

上传人:高**** 文档编号:984197 上传时间:2024-06-03 格式:DOC 页数:6 大小:209KB
下载 相关 举报
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第1页
第1页 / 共6页
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第2页
第2页 / 共6页
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第3页
第3页 / 共6页
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第4页
第4页 / 共6页
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第5页
第5页 / 共6页
2021-2022高中数学人教版必修2作业:3-3-2两点间的距离 (系列三) WORD版含解析.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.3.2两点间的距离【课时目标】1理解并掌握平面上两点之间的距离公式的推导方法2能熟练应用两点间的距离公式解决有关问题,进一步体会解析法的思想1若平面上两点P1、P2的坐标分别为P1(x1,y1),P2(x2,y2),则P1、P2两点间的距离公式为|P1P2|_特别地,原点O(0,0)与任一点P(x,y)的距离为|OP|_2用坐标法(解析法)解题的基本步骤可以概括为:第一步:_第二步:_第三步:_一、选择题1已知点A(3,4)和B(0,b),且|AB|5,则b等于()A0或8 B0或8C0或6 D0或62以A(1,5),B(5,1),C(9,9)为顶点的三角形是()A等边三角形 B等腰三角形

2、C直角三角形 D无法确定3设点A在x轴上,点B在y轴上,AB的中点是P(2,1),则|AB|等于()A5 B4C2 D24已知点A(1,2),B(3,1),则到A,B两点距离相等的点的坐标满足的条件是()A4x2y5 B4x2y5Cx2y5 Dx2y55已知A(3,8),B(2,2),在x轴上有一点M,使得|MA|MB|最短,则点M的坐标是()A(1,0) B(1,0)C D6设A,B是x轴上两点,点P的横坐标为2,且|PA|PB|,若直线PA的方程为xy10,则直线PB的方程为()Axy50 B2xy10C2yx40 D2xy70二、填空题7已知点A(x,5)关于点C(1,y)的对称点是B(

3、2,3),则点P(x,y)到原点的距离是_8点M到x轴和到点N(4,2)的距离都等于10,则点M的坐标为_9等腰ABC的顶点是A(3,0),底边长|BC|4,BC边的中点是D(5,4),则此三角形的腰长为_三、解答题10已知直线l:y2x6和点A(1,1),过点A作直线l1与直线l相交于B点,且|AB|5,求直线l1的方程11求证:三角形的中位线长度等于底边长度的一半能力提升12求函数y的最小值13求证:21坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离反过来,已知两点间的距离也可以根据条件求其中一个点的坐标2平面几何中与线段长有关的

4、定理和重要结论,可以用解析法来证明用解析法解题时,由于平面图形的几何性质是不依赖于平面直角坐标系的建立而改变的,但不同的平面直角坐标系会使计算有繁简之分,因此在建立直角坐标系时必须“避繁就简”332两点间的距离 答案知识梳理12建立坐标系,用坐标表示有关的量进行有关代数运算把代数运算结果“翻译”成几何关系作业设计1A由5,解得b0或82B3C设A(a,0),B(0,b),则2,1,解得a4,b2,|AB|24B设到A、B距离相等的点P(x,y),则由|PA|PB|得,4x2y55B(如图)A关于x轴对称点为A(3,8),则AB与x轴的交点即为M,求得M坐标为(1,0)6A由已知得A(1,0),

5、P(2,3),由|PA|PB|,得B(5,0),由两点式得直线PB的方程为xy507解析由题意知解得d8(2,10)或(10,10)解析设M(x,y),则|y|10解得或92解析|BD|BC|2,|AD|2在RtADB中,由勾股定理得腰长|AB|210解由于B在l上,可设B点坐标为(x0,2x06)由|AB|2(x01)2(2x07)225,化简得x6x050,解得x01或5当x01时,AB方程为x1,当x05时,AB方程为3x4y10综上,直线l1的方程为x1或3x4y1011证明如图所示,D,E分别为边AC和BC的中点,以A为原点,边AB所在直线为x轴建立平面直角坐标系设A(0,0),B(

6、c,0),C(m,n),则|AB|c,又由中点坐标公式,可得D,E,所以|DE|,所以|DE|AB|即三角形的中位线长度等于底边长度的一半12解原式可化为y考虑两点间的距离公式,如图所示,令A(4,2),B(0,1),P(x,0),则上述问题可转化为:在x轴上求一点P(x,0),使得|PA|PB|最小作点A(4,2)关于x轴的对称点A(4,2),由图可直观得出|PA|PB|PA|PB|AB|,故|PA|PB|的最小值为AB的长度由两点间的距离公式可得|AB|5,所以函数y的最小值为513证明如图所示,设点O(0,0),A(x,y),B(1,0),C(1,1),D(0,1),则原不等式左边|OA|AD|AB|AC|,|OA|AC|OC|,|AB|AD|BD|,|OA|AD|AB|AC|2(当且仅当A是OC与BD的交点时等号成立),故原不等式成立

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3