收藏 分享(赏)

2021-2022学年高中数学人教版必修2教案:3-2-3直线方程的一般式 2 WORD版含解析.doc

上传人:高**** 文档编号:980861 上传时间:2024-06-03 格式:DOC 页数:3 大小:102KB
下载 相关 举报
2021-2022学年高中数学人教版必修2教案:3-2-3直线方程的一般式 2 WORD版含解析.doc_第1页
第1页 / 共3页
2021-2022学年高中数学人教版必修2教案:3-2-3直线方程的一般式 2 WORD版含解析.doc_第2页
第2页 / 共3页
2021-2022学年高中数学人教版必修2教案:3-2-3直线方程的一般式 2 WORD版含解析.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时教案备课人授课时间课题3.2.3 直线的一般式方程课标要求明确直线方程一般式的形式特征;会把直线方程的一般式化为斜截式,进而求斜率和截距;教学目标知识目标明确直线方程一般式的形式特征;技能目标会把直线方程的点斜式、两点式化为一般式。情感态度价值观认识事物之间的普遍联系与相互转化;重点直线方程的一般式。难点对直线方程一般式的理解与应用教学过程及方法问题与情境及教师活动学生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于的二元一次方程表示吗?(2)每一个关于的二元一次方程(A,B不同时为0)都表示一条直线吗?教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜

2、率时求出的直线方程是否都为二元一次方程。对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。为此要对B分类讨论,即当时和当B=0时两种情形进行变形。然后由学生去变形判断,得出结论: 关于的二元一次方程,它都表示一条直线。 教师概括指出:由于任何一条直线都可以用一个关于的二元一次方程表示;同时,任何一个关于的二元一次方程都表示一条直线。 我们把关于关于的二元一次方程(A,B不同时为0)叫做直线的一般式方程,简称一般式。2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点? 学生通过对比、讨论,发现直线方程的一般式与其他形式的

3、直线方程的一个不同点是:直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与轴垂直的直线。使学生理解直线和二元一次方程的关系。1教学过程及方法问题与情境及教师活动学生活动 3、在方程中,A,B,C为何值时,方程表示的直线教师引导学生回顾前面所学过的与轴平行和重合、与轴平行和重合的直线方程的形式。然后由学生自主探索得到问题的答案。(1)平行于轴;(2)平行于轴;(3)与轴重合;(4)与重合。 例5已知直线经过点A(6,-4),斜率为,求直线的点斜式和一般式方程。学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含项、含项、常

4、数项顺序排列;项的系数为正;,的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。例6把直线的一般式方程化成斜截式,求出直线的斜率以及它在轴与轴上的截距,并画出图形先由学生思考解答,并让一个学生上黑板板书。然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率的和直线在轴上的截距。求直线与轴的截距,即求直线与轴交点的横坐标,为此可在方程中令=0,解出值,即为与直线与轴的截距。二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?使学生理解二元一次方程的系数和常数项对直线的位置的影响。使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点。使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法。教学小结课后反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3