1、北师大版八年级数学上册第一章勾股定理定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,的平分线交于点E,垂足为F,连接下列结论:;若,则其中正确的结论有()A2个B3个C4个D5个2、
2、如图,在ABC中,AD,BE分别是BC,AC边上的中线,且ADBE,垂足为点F,设BCa,ACb,ABc,则下列关系式中成立的是()Aa2+b25c2Ba2+b24c2Ca2+b23c2Da2+b22c23、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形,且C=90C如果ABC=132,那么ABC是直角三角形D如果a2b2c2=91625,那么ABC是直角三角形4、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A1
3、0mB15mC18mD20m5、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D86、为外一点,与相切于点,则的长为()ABCD7、如图,在中,两直角边,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为()ABCD8、有一个直角三角形的两边长分别为3和4,则第三边的长为()A5BCD5或9、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或1010、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
4、1、如图,在中,将线段绕点顺时针旋转至,过点作,垂足为,若,则的长为_2、我国古代数学著作九章算术中记载了一个问题:“今有池方一丈,葭(ji)生其中,出水一尺引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC1尺)如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_尺3、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_尺4、无盖圆柱形杯子的展开图如图所示将一根长为20c
5、m的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有_cm5、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形中,于,(1)求证:;(2)若,求四边形的面积2、一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向滑动了多少米?3、数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要
6、的公式(1)如图1,是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形用“算两次”的方法计算图2中阴影部分的面积:第一次列式为 ,第二次列式为 ,因为两次所列算式表示的是同一个图形的面积,所以可以得出等式 ;在中,如果,请直接用题中的等式,求阴影部分的面积;(2)如图3,两个边长分别为,的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形,用“算两次”的方法,探究,之间的数量关系4、已知:整式A(n21)2+(2n)2,整式B0尝试化简整式A发现AB2求整式B联想:由上可知,B2(n21)2+(2n)2,当n1时,n21,2n,B为直角三角形的三边
7、长,如图,填写下表中B的值;直角三角形三边n212nB勾股数组8勾股数组355、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?-参考答案-一、单选题1、D【解析】【分析】根据AE平分DAE,可得, 从而得到AB=BE,进而得到,可得正确;然后证明ABEAFD,可得AB=BE=AF=FD,从而得到AED=CED,故正确;再证得DEFDEC,可得正确;再根据ABFDCF,可得BF=CF,故正确;过点F作FGBC于点G,可得,从而得到,进而得到,可得正确;即可求解【详解】解:在矩形中,BAD=ADC=ABC
8、=90,AD=BC,ADBC,AE平分DAE,ADBC,DAE=AEB=45,AEB=BAE=45,AB=BE,AE=AD,故正确;在ABE和AFD中,BAE=DAE,ABE=AFD,AE=AD,ABEAFD(AAS),BE=DF,AB=BE=AF=FD,AED=CED,故正确;DAE=45,DFAE,ADF=45,CDF=45,EDF=ADE-ADF=22.5,CDE=FDE=22.5,AEB=45,AED=67.5,CED=67.5,AED=CED,DE=DE,DEFDEC,DF=CD,DECF,故正确;AB=CD,BAE=CDF=45,AF=DF,ABFDCF,BF=CF,故正确;如图,
9、过点F作FGBC于点G,FGAB,EFG=BAE=45,EFG=FEG,FG=GE,DEFDEC,CE=EF,BF=CF,BG=CG,AB=1,解得:,故正确;正确的有5个故选:D【考点】本题主要考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握相关知识点是解题的关键2、A【解析】【详解】设EFx,DFy,根据三角形重心的性质得AF2y,BF2EF2x,利用勾股定理得到4x2+4y2c2,4x2+y2b2,x2+4y2a2,然后利用加减消元法消去x、y得到a、b、c的关系【解答】解:设EFx,DFy,AD,BE分别是BC,AC边上的中线,点F为ABC
10、的重心,AFACb,BDa,AF2DF2y,BF2EF2x,ADBE,AFBAFEBFD90,在RtAFB中,4x2+4y2c2,在RtAEF中,4x2+y2b2,在RtBFD中,x2+4y2a2,+得5x2+5y2(a2+b2),4x2+4y2(a2+b2),得c2(a2+b2)0,即a2+b25c2故选:A【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1 也考查了勾股定理3、B【解析】【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形定义即可【详解】解:A、A-B=C,ABC,ABC=180,A=90,ABC是直角三角形,此选项正确;B、如果a2=
11、b2-c2,a2+c2=b2,ABC是直角三角形且B=90,此选项不正确;C、如果A:B:C=1:3:2,设A=x,则B=3x,C=2x,则x+3x+2x=180,解得:x=30,则3x=90,ABC是直角三角形,此选项正确;D、如果a2:b2:c2=9:16:25,则a2+b2=c2,ABC是直角三角形,此选项正确;故选:B【考点】本题考查了三角形内角和,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形4、C【解析】【详解】树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,AC=13m,这棵树原来的高度=BC+AC=5
12、+13=18m故选C5、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键6、A【解析】【分析】连接OT,根据切线的性质求出求,结合利用含 的直角三角形的性质求出OT,再利用勾股定理求得PT的长度即可【详解】解:连接OT,如下图与相切于点, ,故选:A【考点】本题考查了切线的性质,含的直角三角形的性质,勾股定理,求出OT的长度是解答关键7、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长【详解】解:AC6cm,BC8cm,C90
13、,AB(cm),由折叠的性质得:AEAC6cm,AEDC90,BE10cm6cm4cm,BED90,设CDx,则BDBCCD8x,在RtDEB中,BE2DE2BD2,即42x2(8x)2,解得:x3,CD3cm,故选:A【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出RtDEB的三边,然后利用勾股定理列出方程是解题的关键8、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可【详解】解:当4是直角边时,斜边=5;当4是斜边时,另一条直角边=;故选:D【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2
14、9、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.10、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键二、填空题1、【解析】【分析】过作,为垂足,通过已
15、知条件可以求得,从而求得,再根据直角三角形的性质,即可求解【详解】解:过作,为垂足,又,又,在与中,在中,设,则由勾股定理可得即解得故答案为【考点】此题主要考查了三角形全等的证明方法和直角三角形的有关性质,利用已知条件合理构造直角三角形是解决本题的关键2、12【解析】【分析】设水深为h尺,则芦苇长为(h + 1)尺,根据勾股定理列方程,解出h即可【详解】设水深为h尺,则芦苇长为(h+ 1)尺,根据勾股定理,得(h+ 1)2-h2=52解得h = 12,水深为12尺,故答案是: 12【考点】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键3、13【解析】【分析】找到题中的直角三角
16、形,设水深为x尺,根据勾股定理解答【详解】解:设水深为尺,则芦苇长为尺,根据勾股定理得:,解得:,芦苇的长度(尺,答:芦苇长13尺故答案为:13【考点】本题考查正确运用勾股定理善于观察题目的信息是解题以及学好数学的关键4、5【解析】【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案【详解】解:由题意可得:杯子内的筷子长度为:15,则木筷露在杯子外面的部分至少有:20155(cm)故答案为5【考点】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键5、【解析】【分析】根据折叠的性质和勾股定理即可求得【详解】解:长方形纸片,根据折叠的性质可得,设,根据勾股定理,即
17、,解得,故答案为:【考点】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键三、解答题1、(1)详见解析;(2)S四边形ABCD=56【解析】【分析】(1)由等角的余角相等可得DAC=ABE,再根据题意可得RtBAERtADC,即可证;(2)根据勾股定理算出AC,由全等可得BE=AC,再算出ACD的面积和ABC的面积相加即可【详解】解:(1)BEAC,ABE+BAE=90,BAD=90,BAE+DAC=90,DAC=ABE,又AB=AD,BEA=ACD,RtBAERtADC(AAS),BE=AC(2)AB=AD=10,CD=6,ACD=90,RtBAERtADC,BE=AC=8,【考点
18、】本题考查三角形全等的判定和性质,三角形面积,关键在于牢记基础知识并灵活使用2、(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了【解析】【分析】(1)根据勾股定理即可求解;(2)先求出BD,再根据勾股定理即可求解【详解】解:(1)由题意可知:,;,在中,由勾股定理得:,因此,这个梯子的顶端距地面有高(2)由图可知:AD=4m,在中,由勾股定理得:,答:梯子的底部在水平方向滑动了【考点】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解3、(1),;或,;9;(2)【解析】【分析】(1)第一次求解阴影部分的边长,再计算面积,第二次利用大的正方
19、形的面积减去四个长方形的面积,从而可建立等式;直接利用公式,再整体代入求值即可;(2)第一次利用梯形的面积公式计算,第二次利用图形的面积和计算,从而得到公式,再整理即可得到答案.【详解】解:(1)因为小正方形的边长为: 所以第一次计算的面积为:,第二次计算的面积为:,所以:; 或, (3)第一次利用梯形的面积公式图形面积为: 第二次利用图形的面积和计算为: 整理得: 【考点】本题考查的是利用几何图形的面积推导代数公式,掌握等面积法推导两个完全平方公式之间的关系,推导勾股定理是解题的关键.4、A(n2+1)2,Bn2+1,15,17;12,37【解析】【分析】先根据整式的混合运算法则求出A,进而
20、求出B,再把n的值代入即可解答【详解】A(n21)2+(2n)2n42n2+1+4n2n4+2n2+1(n2+1)2,AB2,B0,Bn2+1,当2n8时,n4,n2142115,n2+142+117;当n2135时,n6(负值舍去),2n2612,n2+137直角三角形三边n212nB勾股数组15817勾股数组351237故答案为:15,17;12,37【考点】本题考查了勾股数的定义及勾股定理的逆定理:已知ABC的三边满足a2+b2=c2,则ABC是直角三角形5、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解