1、北师大版八年级数学上册第一章勾股定理同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、勾股定理是“人类最伟大的十个科学发现之一”我国对勾股定理的证明是由汉代的赵爽在注解周髀算经时给出的,他用来证明勾
2、股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽下列图案中是“赵爽弦图”的是()ABCD2、如图,有一块直角三角形纸片,C90,AC8,BC6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()A2BCD43、如图,在RtABC中,ACB90, AB5,AC3,点D是BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当DEB是直角时,DF的长为()A5B3CD4、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()ABCD
3、5、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,156、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D457、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A13米B12米C5米D米8、如图,嘉嘉在A时测得一棵4米高的树的影长为,若A时和B时两次日照的光线互相垂直,则B时的影长为()ABCD9、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则ABC 的度数为()A45B50C55D6010、如图,在ABC中,AD,BE分别是BC,AC边上的中线
4、,且ADBE,垂足为点F,设BCa,ACb,ABc,则下列关系式中成立的是()Aa2+b25c2Ba2+b24c2Ca2+b23c2Da2+b22c2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为_2、如图,矩形ABCD中,AD6,AB8点E为边DC上的一个动点,ADE与ADE关于直线AE对称,当CDE为直角三角形时,DE的长为_3、如图,RtABC的两条直角边,分别以RtABC的三边为边作三个正方形若四个阴影部分面积分别为,则的值为_
5、,的值为_4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部_m位置断裂5、九章算术中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为_三、解答题(5小题,每小题10分,共计50分)1、(1)如图是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发
6、表在新英格兰教育日志上),现请你尝试证明过程说明:2、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,又,以台风中心为圆心周围250km以内为受影响区域(1)求的度数;(2)海港受台风影响吗?为什么?3、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA30km,CB20km,那么大樱桃批发市场E应建什么位置才能符合要求?4、超速行驶是引发交通事故的主要原因上
7、周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得APO60,BPO45,试判断此车是否超过了每小时80千米的限制速度?5、在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多
8、少度?-参考答案-一、单选题1、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理2、B【解析】【分析】根据勾股定理求出AB的长,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD【详解】解:C90,AC8,BC6,由翻折得AE=AB=10,DE=BD,CE=AE-AC=1
9、0-8=2,在RtCED中,解得BD=,故选:B【考点】此题考查了勾股定理的应用,翻折的性质,熟记勾股定理的计算公式是解题的关键3、C【解析】【分析】如图,由题意知,可知三点共线,与重合,在中,由勾股定理得,求的值,设,在中,由勾股定理得,计算求解即可【详解】解:如图,是直角由题意知,三点共线与重合在中,由勾股定理得设,在中,由勾股定理得即解得的长为故选C【考点】本题考查了折叠的性质,勾股定理等知识解题的关键在于明确三点共线,与重合4、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式
10、可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分5、B【解析】【分析】先求出两小边的平方和,再求出最长边
11、的平方,最后看看是否相等即可【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+5262,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D、92+122=152,故是直角三角形,不符合题意;故选:B【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形6、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD
12、2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握7、A【解析】【分析】根据题意,画出图形,构造直角三角形,用勾股定理求解即可.【详解】如图所示,过D点作DEAB,垂足为E,AB=13,CD=8,又BE=CD,DE=BC,AE=ABBE=ABCD=138=5,在
13、RtADE中,DE=BC=12, AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.【考点】考查勾股定理,画出示意图,数形结合是解题的关键.8、A【解析】【分析】根据勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2=,代入求解即可【详解】解:由题意,得ECF=CDF=CDE=90,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,=,令DE=x,则EF=x+8,整理,得16x=32,解得x=2故选:A【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键9、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC
14、,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形10、A【解析】【详解】设EFx,DFy,根据三角形重心的性质得AF2y,BF2EF2x,利用勾股定理得到4x2+4y2c2,4x2+y2b2,x2+4y2a2,然后利用加减消元法消去x、y得到a、b、c的关系【解答】解:设EFx,DFy,AD
15、,BE分别是BC,AC边上的中线,点F为ABC的重心,AFACb,BDa,AF2DF2y,BF2EF2x,ADBE,AFBAFEBFD90,在RtAFB中,4x2+4y2c2,在RtAEF中,4x2+y2b2,在RtBFD中,x2+4y2a2,+得5x2+5y2(a2+b2),4x2+4y2(a2+b2),得c2(a2+b2)0,即a2+b25c2故选:A【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1 也考查了勾股定理二、填空题1、2【解析】【分析】根据河水深度、竹竿到岸边的距离、竹竿长构成直角三角形,利用勾股定理进行计算即可【详解】根据题意画出示意图,如图
16、,则AC=0.5m,所以BC即为河水深度,是直角三角形,解得:BC=2(m),故答案为:2【考点】本题考查了勾股定理,根据题意画示意图找出与所求边长相关线段所构成直角三角形是解题关键2、3或6【解析】【分析】分两种情况分别求解,(1)当CED90时,如图(1),根据轴对称的性质得AEDAED45,得DEAD6;(2)当EDA90时,如图(2),根据轴对称的性质得ADED,ADAD,DEDE,得A、D、C在同一直线上,根据勾股定理得AC10,设DEDEx,则ECCDDE8x,根据勾股定理得,DE2DC2EC2,代入相关的值,计算即可【详解】解:当CED90时,如图(1),CED90,根据轴对称的
17、性质得AEDAED9045,D90,ADE是等腰直角三角形,DEAD6;(2)当EDA90时,如图(2),根据轴对称的性质得ADED90,ADAD,DEDE,CDE为直角三角形,即CDE90,ADECDE180,A、D、C在同一直线上,根据勾股定理得,CD1064,设DEDEx,则ECCDDE8x,在RtDEC中,DE2DC2EC2,即x216(8x)2,解得x3,即DE3;综上所述:DE的长为3或6;故答案为:3或6【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键3、 24 0【解析】【分析】先证明从而
18、可得 再利用图形的面积关系可得: 两式相减可得: 而证明 从而可得第二空的答案.【详解】解:如图,以RtABC的三边为边作三个正方形, 两式相减可得: 而 故答案为:24,0【考点】本题考查的是正方形的性质,全等三角形的判定与性质,图形面积之间的关系,证明是解本题的关键.4、6【解析】【分析】设,则,在中,利用勾股定理列方程,即可求解【详解】解:如图,由题意知,设,则,在中,即,解得,因此旗杆在离底部6m位置断裂故答案为:6【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键5、【解析】【分析】根据勾股定理即可得出结论【详解】解:设未折断的竹干长为尺,根据题意可列方程
19、为:故答案为:【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用三、解答题1、(1);(2)证明见解析【解析】【分析】(1)根据正方形面积计算公式解答;(2)利用面积法证明即可得到结论【详解】(1);(2)如图,RtDECRtEAB,DEC=EAB,DE=AE,AED为等腰直角三角形,即, ,【考点】此题考查勾股定理的证明,完全平方公式在几何图形中的应用,正确理解各部分图形之间的关系,正确分析它们之间的面积等量关系是解题的关键2、(1)90;(2)受台风影
20、响,理由见解析【解析】【分析】(1)利用勾股定理的逆定理得出ABC是直角三角形,进而得出ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响【详解】解:(1)AC=300km,BC=400km,AB=500km,AC2+BC2=AB2,ABC是直角三角形,ACB=90;(2)海港C受台风影响,理由:过点C作CDAB,ABC是直角三角形,ACBC=CDAB,300400=500CD,CD=240(km),以台风中心为圆心周围250km以内为受影响区域,海港C受台风影响【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答3
21、、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米在直角中,根据勾股定理得:,在直角中,根据勾股定理得:,又C、D两村到E点的距离相等,所以,解得大樱桃批发市场E应建在离A站20千米的地方【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键4、此车超过每小时80千米的限制速度【解析】【分析】首先,根据在直角三角形BPO中,BPO=45,可得到BO=PO=100m,再根据在直角三角形APO中,APO=60,运用三角函数值,可得到A
22、O=100,根据AB=AO-BO可求得AB的长;再结合速度的计算方法,求出车的速度,然后将车的速度与80千米/时进行比较,即可得到结论.【详解】解:在RtAPO中,APO60,则PAO30.AP2OP200 m,AO100(m)在RtBOP中,BPO45,则BOOP100 m.ABAOBO10010073(m)从A到B小车行驶的速度为73324.3(m/s)87.48 km/h80 km/h.此车超过每小时80千米的限制速度【考点】本题考查了解直角三角形的应用,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键5、第二艘搜救艇的航行方向是北偏西50度【解析】【分析】根据题意求出OA、OB,根据勾股定理的逆定理求出AOB90,即可得出答案【详解】解:根据题意得:OA16海里/时1.5小时24海里;OB12海里/时1.5小时18海里,OB2OA2242182900,AB2302900,OB2OA2AB2,AOB90,艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A的前进,BOD50,即第二艘搜救艇的航行方向是北偏西50度【考点】本题考查了方向角,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形