收藏 分享(赏)

基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx

上传人:a**** 文档编号:959324 上传时间:2025-12-19 格式:DOCX 页数:25 大小:520.50KB
下载 相关 举报
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第1页
第1页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第2页
第2页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第3页
第3页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第4页
第4页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第5页
第5页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第6页
第6页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第7页
第7页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第8页
第8页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第9页
第9页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第10页
第10页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第11页
第11页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第12页
第12页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第13页
第13页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第14页
第14页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第15页
第15页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第16页
第16页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第17页
第17页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第18页
第18页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第19页
第19页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第20页
第20页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第21页
第21页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第22页
第22页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第23页
第23页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第24页
第24页 / 共25页
基础强化北师大版八年级数学上册第一章勾股定理同步测评试题(含详细解析).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北师大版八年级数学上册第一章勾股定理同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交

2、于点F,已知EF=,则BC的长是()AB3C3D32、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为()A5B9C16D253、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D64、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm5、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A9B8C27D456、如图,在AB

3、C中,AD,BE分别是BC,AC边上的中线,且ADBE,垂足为点F,设BCa,ACb,ABc,则下列关系式中成立的是()Aa2+b25c2Ba2+b24c2Ca2+b23c2Da2+b22c27、如图,矩形中,的平分线交于点E,垂足为F,连接下列结论:;若,则其中正确的结论有()A2个B3个C4个D5个8、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形9、为外一点,与相切于点,则的长为()ABCD10、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距

4、离地面2米,那么小巷的宽度为()A0.7米B1.5米C2.2米D2.4米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_2、在平面直角坐标系中,点(3,2)到原点的距离是 _3、已知,在中,则的面积为 _4、某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子A到左墙的距离AE为0.7m,梯子顶端D到地面的是样子离DE为2.4m,若梯子底端A保持不动,将梯子

5、斜塞在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全道的宽BE为_m5、在RtABC中,C90,AC9,AB15,则点C到AB的距离是_三、解答题(5小题,每小题10分,共计50分)1、如图所示的一块地,已知,求这块地的面积2、如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论3、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A

6、多远处?4、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积5、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积-参考答案-一、单选题1、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用

7、,求出AFB=90是解题的关键2、D【解析】【分析】设,根据勾股定理可得,即可求解【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键3、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠

8、的性质是解题的关键4、D【解析】【分析】根据正方形的面积可以得到BC28,AC217,然后根据勾股定理即可得到AB2,从而可以求得AB的值【详解】解:S18cm2,S217cm2,BC28,AC217,ACB90,AB2BC2AC2,即AB281725,AB5cm,故选:D【考点】本题考查正方形的面积、勾股定理,解答本题的关键是明确正方形的面积是边长的平方5、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可【详解】正方形A、B、C的面积依次为2、4、3,根据图形得:2+4=x3解得:x=9故选A【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的

9、关键6、A【解析】【详解】设EFx,DFy,根据三角形重心的性质得AF2y,BF2EF2x,利用勾股定理得到4x2+4y2c2,4x2+y2b2,x2+4y2a2,然后利用加减消元法消去x、y得到a、b、c的关系【解答】解:设EFx,DFy,AD,BE分别是BC,AC边上的中线,点F为ABC的重心,AFACb,BDa,AF2DF2y,BF2EF2x,ADBE,AFBAFEBFD90,在RtAFB中,4x2+4y2c2,在RtAEF中,4x2+y2b2,在RtBFD中,x2+4y2a2,+得5x2+5y2(a2+b2),4x2+4y2(a2+b2),得c2(a2+b2)0,即a2+b25c2故选

10、:A【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1 也考查了勾股定理7、D【解析】【分析】根据AE平分DAE,可得, 从而得到AB=BE,进而得到,可得正确;然后证明ABEAFD,可得AB=BE=AF=FD,从而得到AED=CED,故正确;再证得DEFDEC,可得正确;再根据ABFDCF,可得BF=CF,故正确;过点F作FGBC于点G,可得,从而得到,进而得到,可得正确;即可求解【详解】解:在矩形中,BAD=ADC=ABC=90,AD=BC,ADBC,AE平分DAE,ADBC,DAE=AEB=45,AEB=BAE=45,AB=BE,AE=AD,故正确;在AB

11、E和AFD中,BAE=DAE,ABE=AFD,AE=AD,ABEAFD(AAS),BE=DF,AB=BE=AF=FD,AED=CED,故正确;DAE=45,DFAE,ADF=45,CDF=45,EDF=ADE-ADF=22.5,CDE=FDE=22.5,AEB=45,AED=67.5,CED=67.5,AED=CED,DE=DE,DEFDEC,DF=CD,DECF,故正确;AB=CD,BAE=CDF=45,AF=DF,ABFDCF,BF=CF,故正确;如图,过点F作FGBC于点G,FGAB,EFG=BAE=45,EFG=FEG,FG=GE,DEFDEC,CE=EF,BF=CF,BG=CG,AB

12、=1,解得:,故正确;正确的有5个故选:D【考点】本题主要考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握相关知识点是解题的关键8、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答9、A【解析】【分析】连接OT,根据切线的性质求出求,结合利用含 的直角三角形的性质求出OT,再利用勾股定理求得PT的长度即可【

13、详解】解:连接OT,如下图与相切于点, ,故选:A【考点】本题考查了切线的性质,含的直角三角形的性质,勾股定理,求出OT的长度是解答关键10、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选:C【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.二、填空题1、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详

14、解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.2、【解析】【分析】根据两点的距离公式计算求解即可【详解】解:由题意知点(3,2)到原点的距离为故答案为:【考点】本题考查了用勾股定理求解两点的距离公式解题的关键在于熟练掌握距离公式:、两点间的距离公式为3、2或14#14或2【解析】【分析】过点B作

15、AC边的高BD,RtABD中,A=45,AB=4,得BD=AD=4,在RtBDC中,BC=4,得CD=5,ABC是钝角三角形时,ABC是锐角三角形时,分别求出AC的长,即可求解【详解】解:过点作边的高,中,在中,是钝角三角形时,;是锐角三角形时,故答案为:2或14【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想4、2.7【解析】【分析】先根据勾股定理求出AD的长,同理可得出AB的长,进而可得出结论【详解】在RtACB中,ACB=90,AE=0.7米,DE=2.4米,AD2=0.72+2.42=6.25在RtABD中,ABC=90,BC=1.5米,AB2+BC2=AC2,AB2

16、+1.52=6.25,AB2=4AB0,AB=2米BE=AE+AB=0.7+2=2.7米故答案为 2.7【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用5、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在RtABC中,C90,则有AC2+BC2=AB2AC=9,BC=12,AB=在RtABC中,C=90,则有AC2+BC2=AB2,AC=9,AB=15,BC=12,SABC=ACBC=AB

17、h,h=故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键三、解答题1、【解析】【分析】根据勾股定理求得的长,再根据勾股定理的逆定理判定为直角三角形,从而不难求得这块地的面积【详解】解:连接,为直角三角形,这块地的面积【考点】本题考查了学生对勾股定理及其逆定理的理解及运用能力,解题的关键是掌握勾股定理的知识2、(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根据勾股定理求出OD,即可求出答案;(2)求出AOB和DOC全等,根据全等三角形的性质得出OC

18、=OB,ABO=DCO,求出OCB=OBC,求出EBC=ECB,根据等腰三角形的判定得出即可【详解】(1)AOOD,AO=4m,AB=5m,OB=3m,梯子的顶端A沿墙下滑1m至C点,OC=AOAC=3m,CD=AB=5m,由勾股定理得:OD=4m,BD=ODOB=4m3m=1m;(2)CE与BE的大小关系是CE=BE,证明如下:连接CB,由(1)知:AO=DO=4m,AB=CD=5m,AOB=DOC=90,在RtAOB和RtDOC中,RtAOBRtDOC(HL),ABO=DCO,OC=OB,OCB=OBC,ABOOBC=DCOOCB,EBC=ECB,CE=BE【考点】本题考查了勾股定理,等腰

19、三角形的性质和判定,全等三角形的判定与性质等,能灵活运用勾股定理进行计算是解(1)的关键,能求出DCO=ABO和OC=OB是解(2)的关键3、E应建在距A点15km处【解析】【分析】设,则,根据勾股定理求得和,再根据列式计算即可;【详解】设,则,由勾股定理得:在中,在中,由题意可知:,所以:,解得:所以,E应建在距A点15km处【考点】本题主要考查了勾股定理的实际应用,准确计算是解题的关键4、216平方米【解析】【分析】连接AC,根据勾股定理计算AC,根据勾股定理的逆定理判定三角形ABC是直角三角形,根据面积公式计算即可【详解】连接AC,AD12,CD9,ADC90,AC=15,AB39,BC

20、36,AC=15,ACB=90,这块空地的面积为:=216(平方米),故这块草坪的面积216平方米【考点】本题考查了勾股定理及其逆定理,熟练掌握定理并灵活运用是解题的关键5、【解析】【分析】先由折叠可知EC=BC=2,进而可知AD=CE,通过全等三角形的角角边判定定理可证明ADFCEF,由全等可知FE=DF,设FC为x,则FE=DF=4-x,根据直角三角形的勾股定理可列方程,从而计算出CF的长度,通过CF与AD的长度可计算出重合部分面积【详解】解:AEC是由ABC沿AC折叠后得到的,EC=BC=2,且E=B=90,在ADF与CEF中, ,ADFCEF(AAS),设FC=x,则FE=DF=4-x,在RtCEF中,由勾股定理可知: , ,解得 , ,故折叠后重合部分的面积为 【考点】本题考查图形折叠的相关性质,以及直角三角形的勾股定理的应用,以及全等三角形的判定,找到合适的条件,选择适合的判定方法去证明全等三角形,利用勾股定理和方程思想列方程是解决本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1