1、北师大版八年级数学上册第一章勾股定理专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形2、如图,三角形纸片ABC,点D
2、是BC边上一点,连接AD,把ABD沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DGGE,AF6,BF4,ADG的面积为8,则点F到BC的距离为()ABCD3、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A0.7米B1.5米C2.2米D2.4米4、如图,正方形的边长为10,连接,则线段的长为()ABCD5、勾股定理是“人类最伟大的十个科学发现之一”我国对勾股定理的证明是由汉代的赵爽在注解周髀算经时给出的,他用来证明勾股定理的
3、图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽下列图案中是“赵爽弦图”的是()ABCD6、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果a2=b2c2,那么ABC是直角三角形且A=90B如果A:B:C=1:2:3,那么ABC是直角三角形C如果,那么ABC是直角三角形D如果,那么ABC是直角三角形7、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D458、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股定理的是()ABCD9、如图,在中,平分交于D点,E,F分别
4、是,上的动点,则的最小值为()ABC3D10、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,AD是BC边上的中线,ADAB,如果AC=5,AD=2,那么AB的长是_2、如图所示,数轴上点A所表示的数为_3、已知,在中,则的面积为 _4、我国古代数学著作九章算术中记载了一个问题:“今有池方一丈,葭(ji)生其中,出水一尺引葭赴岸(丈、尺是长度单位,1丈
5、10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC1尺)如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_尺5、某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子A到左墙的距离AE为0.7m,梯子顶端D到地面的是样子离DE为2.4m,若梯子底端A保持不动,将梯子斜塞在右墙BC上,梯子顶端C到地面的距离CB为1.5m,则这两面直立墙壁之间的安全道的宽BE为_m三、解答题(5小题,每小题10分,共计50分)1、已知:如图,四边形ABCD,A90,AD12,AB16,CD15,BC25(1)求BD的长
6、;(2)求四边形ABCD的面积2、如图,点是内一点,把绕点顺时针旋转得到,且,.(1)判断的形状,并说明理由;(2)求的度数.3、阅读理解:课堂上学习了勾股定理后,知道“勾三、股四、弦五”王老师给出一组数让学生观察:3,4,5;5,12,13;7,24,25;9,40,41;学生发现这些勾股数的勾都是奇数,且从3起就没有间断过,于是王老师提出以下问题让学生解决(1)请你根据上述的规律写出下一组勾股数:11,_,_;(2)若第一个数用字母(为奇数,且)表示,则后两个数用含的代数式分别怎么表示?聪明的小明发现每组第二个数有这样的规律:,于是他很快表示出了第二个数为,则用含的代数式表示第三个数为_(
7、3)用所学知识说明(2)中用表示的三个数是勾股数4、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积5、下图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度-参考答案-一、单选题1、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详
8、解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答2、C【解析】【分析】先求出ABD的面积,根据三角形的面积公式求出DF,设点F到BD的距离为h,根据BDhBFDF,求出BD即可解决问题【详解】解:DGGE,SADGSAEG8,SADE16,由翻折可知,ADBADE,BEAD,SABDSADE16,BFD90,(AF+DF)BF16,(6+DF)416,DF2,DB,设点F到BD的距离为h,则有BDhBFDF,h42,h,点F到B
9、C的距离为故选:C【考点】此题考查了翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题3、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选:C【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.4、B【解析】【分析】延长DH交AG于点E,利用SSS证出AGBCHD,然后利用ASA证出ADEDCH,根据全等三角形的性质
10、求出EG、HE和HEG,最后利用勾股定理即可求出HG【详解】解:延长DH交AG于点E四边形ABCD为正方形AD=DC=BA=10,ADC=BAD=90在AGB和CHD中AGBCHDBAG=DCHBAGDAE=90DCHDAE=90CH2DH2=8262=100= DC2CHD为直角三角形,CHD=90DCHCDH=90DAE=CDH,CDHADE=90ADE=DCH在ADE和DCH中ADEDCHAE=DH=6,DE=CH=8,AED=DHC=90EG=AGAE=2,HE= DEDH=2,GEH=180AED=90在RtGEH中,GH=故选B【考点】此题考查是正方形的性质、全等三角形的判定及性质
11、和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键5、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理6、A【解析】【分析】根据直角三角形的判定和勾股定理的逆定理解答即可【详解】解:A、如果a2=b2-c2,即b2=a2+c2,那么ABC是直角三角形且B=90
12、,选项错误,符合题意;B、如果A:B:C=1:2:3,由A+B+C=180,可得A=90,那么ABC是直角三角形,选项正确,不符合题意;C、如果a2:b2:c2=9:16:25,满足a2+b2=c2,那么ABC是直角三角形,选项正确,不符合题意;D、如果A-B=C,由A+B+C=180,可得A=90,那么ABC是直角三角形,选项正确,不符合题意;故选:A【考点】本题考查的是直角三角形的判定和勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形7、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分
13、别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握8、A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【
14、详解】解:A、不能利用图形面积证明勾股定理;B、根据面积得到;C、根据面积得到,整理得;D、根据面积得到,整理得.故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出的关系,即可证明勾股定理.9、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最
15、小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键10、D【解析】【分析】由菱形的性质得到FCOECO,进而证明ECOECBFCO30,2BECE,利用勾股定理得出BC,再解得菱形的面积为2 ,最后由阴影部分的面积 S菱形AECF解题【详解】解:四边形AECF是菱形,AB3,假设BEx,则AE3x,CE3x,四边形AECF是菱形,FCOECO,ECOECB,ECOECBFCO30,2BECE,CE2x,2x3x,解得:x1,CE2,利用勾股定理得出:BC2+BE2EC2,BC,又AEABBE312,则菱形的面积
16、是:AEBC2 阴影部分的面积 S菱形AECF cm2故选:D【考点】本题考查菱形的性质、勾股定理、含30直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键二、填空题1、3【解析】【分析】过点C作CEAB交AD延长线于E,先证ABDECD(AAS),求出AE=2AD=4,在RtAEC中,即可【详解】解:过点C作CEAB交AD延长线于E,AD是BC边上的中线,BD=CD,ADAB,CEAB,ADCE,ABD=ECD,E=90,在ABD和ECD中,ABDECD(AAS),AB=EC,AD=ED=2,AE=2AD=4,在RtAEC中,AB=CE=3故答案为:3【考点】本题考查中线性质,平行线
17、性质,三角形全等判定与性质,勾股定理,掌握中线性质,平行线性质,三角形全等判定与性质,勾股定理,关键是利用辅助线构造三角形全等2、【解析】【分析】根据数轴上点的特点和相关线段的长,结合勾股定理求出斜边长,即可求出-1和A之间的线段的长,即可知A所表示的数【详解】图中直角三角形的两直角边为1,2,所以斜边长为,那么-1和A之间的距离为,那么数轴上点A所表示的数为:故答案为:【考点】本题考查实数与数轴之间的对应关系以及勾股定理,利用勾股定理求出直角三角形的斜边的长是解答本题的关键3、2或14#14或2【解析】【分析】过点B作AC边的高BD,RtABD中,A=45,AB=4,得BD=AD=4,在Rt
18、BDC中,BC=4,得CD=5,ABC是钝角三角形时,ABC是锐角三角形时,分别求出AC的长,即可求解【详解】解:过点作边的高,中,在中,是钝角三角形时,;是锐角三角形时,故答案为:2或14【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想4、12【解析】【分析】设水深为h尺,则芦苇长为(h + 1)尺,根据勾股定理列方程,解出h即可【详解】设水深为h尺,则芦苇长为(h+ 1)尺,根据勾股定理,得(h+ 1)2-h2=52解得h = 12,水深为12尺,故答案是: 12【考点】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键5、2.7【解析】【分析】先根据勾股定
19、理求出AD的长,同理可得出AB的长,进而可得出结论【详解】在RtACB中,ACB=90,AE=0.7米,DE=2.4米,AD2=0.72+2.42=6.25在RtABD中,ABC=90,BC=1.5米,AB2+BC2=AC2,AB2+1.52=6.25,AB2=4AB0,AB=2米BE=AE+AB=0.7+2=2.7米故答案为 2.7【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用三、解答题1、(1)BD20;(2)S四边形ABCD246【解析】【分析
20、】(1)由A90,AD12,AB16,利用勾股定理:BD2AD2+AB2,从而可得答案;(2)利用勾股定理的逆定理证明:CDB90,再由四边形的面积等于两个直角三角形的面积之和可得答案【详解】解:(1)A90,AD12,AB16,BD2AD2+AB2,BD2122+162,BD20;(2)BD2+CD2202+152625,CB2252625,BD2+CD2CB2,CDB90,S四边形ABCDSRtABD+SRtCBD, 246【考点】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握以上知识是解题的关键2、(1)是直角三角形,理由见解析;(2)150.【解析】【分析】(1)求出DE,CE,C
21、D长,根据勾股逆定理可知的形状;(2)由等边三角形角的性质和全等三角形角的性质可知的度数【详解】解:(1)是直角三角形理由如下:绕点顺时针旋转得到,是等边三角形,又,是直角三角形.(2)由(1)得,是等边三角形,.【考点】本题是三角形综合题,主要考查了全等三角形的证明和性质、等边三角形的性质和判定、勾股逆定理,熟练应用等边三角形的性质求线段长及角度是解题的关键.3、 (1)60,61(2)(3)见解析【解析】【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之
22、一,弦是勾的平方加1的二分之一;(3)依据勾股定理的逆定理进行证明即可(1)解:3、4、5;5、12、13;7、24、25;9、40、41;,11,60,61;故答案为:60,61;(2)解:第一个数用字母a(a为奇数,且a3)表示,第二数为;则用含a的代数式表示第三个数为;故答案为:;(3)解:,又a为奇数,且a3,由a,三个数组成的数是勾股数【考点】本题考查的是勾股数之间的关系,属规律型问题,根据题目中所给的勾股数及关系式进行猜想、证明即可4、216平方米【解析】【分析】连接AC,根据勾股定理计算AC,根据勾股定理的逆定理判定三角形ABC是直角三角形,根据面积公式计算即可【详解】连接AC,
23、AD12,CD9,ADC90,AC=15,AB39,BC36,AC=15,ACB=90,这块空地的面积为:=216(平方米),故这块草坪的面积216平方米【考点】本题考查了勾股定理及其逆定理,熟练掌握定理并灵活运用是解题的关键5、小敏的猜想错误,立柱AB段的正确长度长为9米 【解析】【分析】延长FC交AB于点G,设BG=x米,在RtBGC中利用勾股定理可求x,进而可得AB的正确长度【详解】解:如图,延长FC交AB于点G 则CGAB,AG=CD=1米,GC=AD=15米设BG=x米,则BC=(261x)米 在RtBGC中, 解得 BA=BGGA=8+1=9(米) 小敏的猜想错误,立柱AB段的正确长度长为9米【考点】本题主要考查勾股定理的应用,解题的关键是作出辅助线,构造直角三角形