1、八年级数学上册第十四章整式的乘法与因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知10a20,100b50,则a+2b+3的值是()A2B6C3D2、计算(a+3)(a+1)的结果是(
2、)Aa22a+3Ba2+4a+3Ca2+4a3Da22a33、计算的结果是()ABCD4、若x24x+10,则代数式2x2+8x+1的值为()A0B1C2D35、计算的结果是()AaBCD6、已知x+y=4,xy=2,则x2+y2的值()A10B11C12D137、已知,则的值为()ABCD8、已知m2n2nm2,则的值是()A1B0C1D9、下列运算正确的是()ABCD10、若,则的值分别为()A9,5B3,5C5,3D6,12第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果定义一种新运算,规定 adbc,请化简: _2、因式分解:_3、两个完全相同的长方形如图放
3、置,每个长方形的面积为28,图中阴影部分的面积为20,则其中一个长方形的周长为_4、计算:=_5、平面直角坐标系中,已知点的坐标为若将点先向下平移个单位,再向左平移个单位后得到点,则_三、解答题(5小题,每小题10分,共计50分)1、(1)化简: (2)解不等式组: 2、已知,求的值3、第一步:阅读材料,掌握知识要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得这时,由于中又有公因式,于是可提公因式,从而得到,因此有这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来
4、因式分解第二步:理解知识,尝试填空:(1) 第三步:应用知识,因式分解:(2) x2-(p+q)x+pq;(3)第四步:提炼思想,拓展应用(4)已知三角形的三边长分别是a,b,c,且满足a2+2b2+c2=2b(a+c),试判断这个三角形的形状,并说明理由4、先化简,再求值:(a+)(a)+a(a6),其中a5、计算:(1)a 6a 22a 3a;(2)2x(x2y )(xy)2-参考答案-一、单选题1、B【解析】【分析】把100变形为102,两个条件相乘得a+2b=3,整体代入求值即可【详解】解:10a100b=10a102b=10a+2b=2050=1000=103,a+2b=3,原式=3
5、+3=6,故选:B【考点】本题考查了幂的乘方,同底数幂的乘法,解题的关键是:把100变形为102,两个条件相乘得a+2b=3,整体代入求值2、A【解析】【分析】运用多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加3、A【解析】【分析】由单项式乘以单项式,即可得到答案【详解】解:;故选:A【考点】本题考查了单项式乘以单项式,解题的关键是熟练掌握运算法则进行解题4、D【解析】【分析】给条
6、件的代数式求值问题,先观察代数式,把条件变成需要的形式,然后整体代入,计算即可【详解】x24x+10,x24x1,2x2+8x2,原式2+13故选择:D【考点】本题考查代数式的值问题,关键是把条件变性后,整体代入,如果次数较高的代数式一般把条件高次的求出,然后用降次方法进行化简,在整体代入求值5、B【解析】【分析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】原式=a5.故选B.【考点】本题考查了同底数幂的乘法运算,熟练掌握运算法则是解答本题的关键.6、C【解析】【分析】先根据完全平方公式进行变形,再整体代入求出即可【详解】解:x+y=-4,xy=2,x2+y2=(x+y)2-2xy=
7、(-4)2-22=12,故选C【考点】本题考查对完全平方公式的应用,解题关键是能正确根据公式进行变形7、A【解析】【分析】先利用已知条件得到x212x,利用整体代入得到原式,利用多项式乘多项式得到原式,再将x212x代入进而可求得答案【详解】解:,故选:A【考点】本题考查了整体代入的方法,整式乘法的运算法则,灵活运用整体思想及熟练掌握整式乘法的运算法则是解决本题的关键8、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的
8、题型将代数式转化为两个完全平方式是解决这个问题的关键9、D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【考点】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键10、B【解析】【分析】根据积的乘方法则展开得出a3mb3n=a9b15,推出3m=9,3n=15,求出m、n即可【详解】解:(ambn)3=a9b15,a3mb3n=a9b15,3m=9,3n=15,m=3,n
9、=5,故选B二、填空题1、3【解析】【分析】根据新运算的定义将原式转化成普通的运算,然后进行整式的混合运算即可【详解】根据题意得: (x1)(x+3)x(x+2)x2+3xx3x22x3,故答案为:3【考点】本题主要考查了整式的混合运算,根据新运算的定义将新运算转化为普通的运算是解决此题的关键2、【解析】【分析】先提公因式m,再利用平方差公式即可分解因式【详解】解:,故答案为:【考点】本题考查了利用提公因式法和公式法因式分解,解题的关键是找出公因式,熟悉平方差公式3、22【解析】【分析】设矩形的长边是a,短边是b,则,求出b,再求出a,即可得出答案【详解】设每个长方形的长为a,宽为,则,则每个
10、长方形的周长是故答案为:22【考点】本题考查了矩形性质和三角形的面积的应用,解此题的关键是能把不规则图形的面积转化成规则图形的面积4、#【解析】【分析】原式利用平方差公式化简即可【详解】故答案为:【考点】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键5、3【解析】【分析】先写出点向下平移个单位后的坐标,再写出向左平移个单位后的坐标即可求出m、n,最后代入m+n即可【详解】点向下平移个单位后的坐标为,即再向左平移个单位后的坐标为 ,即m+n=2+1=3故答案为:3【考点】本题考查坐标的平移变换以及代数式求值根据坐标的平移变换求出m、n的值是解答本题的关键三、解答题1、(1)4-x;(2)
11、x-2【解析】【分析】(1)根据平方差公式和合并同类项的性质计算,即可得到答案;(2)根据一元一次不等式组的性质计算,即可得到答案【详解】(1) ;(2)由得:;由得:的解集为:【考点】本题考查了整式运算、一元一次不等式组的知识;解题的关键是熟练掌握平方差公式、一元一次不等式组的性质,从而完成求解2、256【解析】【分析】逆用同底数幂的乘法公式可得,即得结果【详解】解:,【考点】本题主要考查了同底数幂乘法的逆运算,熟知同底数幂乘法的逆运算计算法则是解题的关键3、(1)(2)(3)(4)等边三角形,理由见详解【解析】【分析】(1)如果把一个多项式各项分组并提出公因式后,它们的另一个因式刚好相同,
12、那么这个多项式即可利用分组分解法来因式分解,据此即可求解;(2)先展开(pq)x,再利用分组分解法来因式分解,据此即可求解;(3)直接利用分组分解法来因式分解即可求解;(4)根据所给等式,先移项,再利用完全平方公式和等边三角形的判定求证即可【详解】解:(1)(2)(3)(4)等边三角形,理由如下:即这个三角形是等边三角形【考点】本题考查因式分解提公因式法,因式分解分组分解法,完全平方公式,等边三角形的判定,解题的关键是读懂材料并熟知因式分解的方法4、2a26a3,16【解析】【分析】原式利用平方差公式,以及单项式乘以多项式法则计算,合并得到最简结果,把a的值代入计算即可求出值【详解】解:原式a23+a26a2a26a3,当a时,原式46316【考点】本题主要考查整式化简求值,准确计算是解题的关键5、(1)a 4;(2)x22xyy2【解析】【分析】(1)先算同底数幂的乘法和除法,再合并同类项;(2)先根据单项式与多项式的乘法法则,完全平方公式计算,再去括号合并同类项;【详解】(1)解:a 6a 22a 3aa 42a 4a 4;(2)2x(x2y )(xy)22x24xy(x22xyy2)2x24xyx22xyy2x22xyy2【考点】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键