收藏 分享(赏)

基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx

上传人:a**** 文档编号:958790 上传时间:2025-12-19 格式:DOCX 页数:15 大小:180.60KB
下载 相关 举报
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第1页
第1页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第2页
第2页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第3页
第3页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第4页
第4页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第5页
第5页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第6页
第6页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第7页
第7页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第8页
第8页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第9页
第9页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第10页
第10页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第11页
第11页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第12页
第12页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第13页
第13页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第14页
第14页 / 共15页
基础强化人教版八年级数学上册第十四章整式的乘法与因式分解专项练习试题(含详细解析).docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十四章整式的乘法与因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、a12可以写成()Aa6+a6Ba2a6Ca6a6Da12a2、化简(a2)2a(5a)的结果是()Aa4

2、B3a4C5a4Da243、下列等式从左到右变形,属于因式分解的是()A(a+b)(ab)a2b2Bx22x+1(x1)2C2a1a(2)Dx2+6x+8x(x+6)+84、计算:,其中,第一步运算的依据是()A同底数幂的乘法法则B幂的乘方法则C乘法分配律D积的乘方法则5、下列各式因式分解正确的是()Aa2+4ab+4b2=(a+4b)2B2a2-4ab+9b2=(2a-3b)2C3a2-12b2=3(a+4b)(a-4b)Da(2a-b)+b(b-2a)=(a-b)(2a-b)6、分解因式4x2y2的结果是()A(4x+y)(4xy)B4(x+y)(xy)C(2x+y)(2xy)D2(x+y

3、)(xy)7、如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:(2a+b)(m+n);a(m+n)+b(m+n);m(2a+b)+n(2a+b); 2am+2an+bm+bn,你认为其中正确的有()ABCD8、要使多项式不含的一次项,则与的关系是()A相等B互为相反数C互为倒数D乘积为9、已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数若甲与乙相乘的积为,乙与丙相乘的积为,则甲与丙相乘的积为()ABCD10、()A(-2)99B299C2D-2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:(a+b)2(a+b)_2、已知,则_3、已知

4、,则_,_4、若a+b4,ab1,则(a+2)2(b2)2的值为_5、分解因式_三、解答题(5小题,每小题10分,共计50分)1、仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值解:设另一个因式为,得则解得:,另一个因式为,的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及的值2、计算:3、(1)化简: (2)解不等式组: 4、计算:(a+1)(a3)(a2)25、(1)分解因式:(2)解不等式组并在数轴上表示它的解集-参考答案-一、单选题1、C【解析】【分析】分别根据合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一

5、判断即可【详解】解:Aa6+a6=2a6,故本选项不合题意;Ba2a6=a8,故本选项不合题意;Ca6a6=a12,故本选项符合题意;Da12a=a11,故本选项不合题意故选:C【考点】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟练掌握幂的运算法则是解答本题的关键2、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.3、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式根据定义即可进行判断【详

6、解】解:A(a+b)(ab)a2b2,原变形是整式乘法,不是因式分解,故此选项不符合题意;Bx22x+1(x1)2,把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;C2a1a(2),等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;Dx2+6x+8x(x+6)+8,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B【考点】本题主要考查了因式分解的定义解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算4、D【解析】【分析】根据题意可知,第一步运算的依据是积的乘方法则:积的乘方,等于每个

7、因式乘方的积【详解】解:计算:,其中,第一步运算的依据是积的乘方法则故选:D【考点】本题主要考查幂的运算,关键是熟练掌握幂的运算法则是解题的关键5、D【解析】【分析】根据因式分解的定义:把一个多项式写成几个因式的积的形式进行判断即可【详解】a2+4ab+4b2=(a+2b)2,故选项A不正确;2a2-4ab+9b2=(2a-3b)2不是因式分解,B不正确;3a2-12b2=3(a+2b)(a-2b),故选项C不正确;a(2a-b)+b(b-2a)=(a-b)(2a-b)是因式分解,D正确,故选D【考点】本题考查的是因式分解的概念,把一个多项式写成几个因式的积的形式叫做因式分解,在判断一个变形是

8、否是因式分解时,看是否是积的形式即可6、C【解析】【分析】按照平方差公式进行因式分解即可.【详解】解:4x2y2(2x+y)(2xy)故选:C【考点】此题主要考查了公式法分解因式,正确应用公式是解题关键7、C【解析】【分析】根据长方形面积公式判断各式是否正确即可【详解】(2a+b)(m+n),正确;a(m+n)+b(m+n),错误;m(2a+b)+n(2a+b),正确; 2am+2an+bm+bn,正确故正确的有故答案为:C【考点】本题考查了长方形的面积问题,掌握长方形的面积公式是解题的关键8、A【解析】【分析】计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0

9、,所以p与q相等.【详解】解:乘积的多项式不含x的一次项p-q=0p=q故选择A.【考点】此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.9、B【解析】【分析】把题中的积分别分解因式后,确定出甲乙丙各自的整式,即可解答【详解】解:甲与乙相乘的积为,乙与丙相乘的积为,甲为,乙为,丙为,则甲与丙相乘的积为,故选:B【考点】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键10、B【解析】【分析】利用乘方的定义变形为,合并即可得到答案【详解】故选:B【考点】本题主要考查了积的乘方、整式的加减,解题的关键是掌握积的乘方及整式加减运算法则二、填空题1、#【解析】【分析

10、】直接找出公因式(a+b),进而分解因式得出答案【详解】解:(a+b)2(a+b)(a+b)(a+b1)故答案为:(a+b)(a+b1)【考点】此题主要考查因式分解,解题的关键是熟知提公因式法的运用2、【解析】【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得的值,进而代入代数式即可求解【详解】解:,即,故答案为:【考点】本题考查了因式分解的应用,掌握完全平方公式是解题的关键3、 12 【解析】【分析】利用完全平方公式和平方差公式计算求值即可;【详解】解:由题意得:,故答案为:12,;【考点】本题考查了代数式求值,实数的混合运算,掌握乘法公式是解题关键4、20【解析】【分析】先

11、利用平方差公式:化简所求式子,再将已知式子的值代入求解即可【详解】将代入得:原式故答案为:20【考点】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握5、【解析】【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解【详解】解:m3-4m2+4m=m(m2-4m+4)=m(m-2)2故答案为:m(m-2)2【考点】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止三、解答题1、另一个因式为 ,的值为5【解析】【分析】设另一个因

12、式是,则,根据对应项的系数相等即可求得和的值【详解】解:设另一个因式为,得则解得:,故另一个因式为 ,的值为5【考点】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是关键2、【解析】【分析】直接利用多项式乘多项式以及多项式除单项式进而合并同类项得出答案【详解】解:原式【考点】本题主要考查了多项式乘多项式以及多项式除单项式,正确掌握相关运算法则是解题关键3、(1)4-x;(2)x-2【解析】【分析】(1)根据平方差公式和合并同类项的性质计算,即可得到答案;(2)根据一元一次不等式组的性质计算,即可得到答案【详解】(1) ;(2)由得:;由得:的解集为:【考点】本题考查了整式运算

13、、一元一次不等式组的知识;解题的关键是熟练掌握平方差公式、一元一次不等式组的性质,从而完成求解4、【解析】【分析】先计算乘法,再合并同类项,即可求解【详解】解:(a+1)(a3)(a2)2 【考点】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键5、(1)(x+y)2(x-y)2;(2)0x2【解析】【分析】(1)观察该式特点,先变形为(x2+y2)2-4x2y2=(x2+y2)2-(2xy)2再根据公式法a2-b2=(a+b)(a-b),得(x2+y2)2-(2xy)2=(x+y)2(x-y)2(2)根据不等式的性质,解不等式,解得:x0解不等式,解得:x2那么,该不等式组的解集为0x2【详解】解:(1)(x2+y2)2-4x2y2=(x2+y2)2-(2xy)2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2(2)解不等式,得3x2x解得:x0解不等式,得:-4x-8解得:x2该不等式组的解集为0x2该不等式组的解集在数轴上表示如下:【考点】本题主要考查运用公式法进行因式分解、解一元一次不等式组以及在数轴上表示不等式的解集,熟练掌握公式法进行因式分解以及解一元一次不等式组是解决本题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1