1、人教版八年级数学上册第十五章分式重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、的计算结果为()ABCD2、方程的解是()ABCD3、若数使关于的分式方程的解为正数,则的取值正确的是()ABCD4
2、、若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m5、甲、乙两人分别从距目的地6km和10km的两地同时出发甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,求甲、乙的速度若设甲的速度为3xkm/h,则可列方程为()ABCD6、某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务,若设原计划每周生产x万个口罩,则可列方程为()ABCD7、计算的结果是( )ABCD8、衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1
3、.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为ABCD9、已知关于x的分式方程=1的解是负数,则m的取值范围是()Am3Bm3且m2Cm3Dm3且m210、九章算术中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间设规定时间为x天,则可列方程为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、若分式方程有增根,则这个增根是_3、关
4、于x的分式方程的解是正数,则a的取值范围是_4、化简;(1)=_5、若关于x的方程无解,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度2、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍
5、,求骑车同学的速度3、计算:(1)(2)4、观察下列各式:,请你根据上面各式的规律,写出符合该规律的一道等式:_请利用上述规律计算:_(用含有的式子表示)请利用上述规律解方程:5、阅读下列材料:在学习“分式方程及其解法”的过程中,老师提出一个问题:若关于的分式方程的解为正数,求的取值范围经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于的方程,得到方程的解为,由题目可得,所以,问题解决小聪说:你考虑的不全面,还必须保证才行(1)请回答: 的说法是正确的,正确的理由是 完成下列问题:(2)已知关于的方程的解为非负数,求的取值范围;(3)若关于的方程无解,求的值-参考答案-一、单
6、选题1、B【解析】【分析】先把分母因式分解,再把除法转换为乘法,约分化简得到结果【详解】=故选:B【考点】本题主要考查了分式的除法,约分是解答的关键2、D【解析】【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解【详解】解:方程可化简为经检验是原方程的解故选D【考点】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键3、A【解析】【分析】表示出分式方程的解,由解为正数确定出a的范围即可【详解】解:分式方程整理得:,去分母得:2a4x4,解得:x,由分式方程的解为正数,得到0,且1,解得:a6且a2故选:A【考点】此题考查了分
7、式方程的解,始终注意分母不为0这个条件4、B【解析】【分析】先去分母解方程,根据方程的解为正数列不等式即可【详解】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故选:B【考点】本题考查含参数的分式方程解法,不等式,分式有意义条件,解题的关键是掌握含参数的分式方程解法,不等式,分式有意义条件5、D【解析】【分析】求的是速度,路程明显,一定是根据时间来列等量关系,本题的关键描述语是:甲比乙提前20分钟到达目的地等量关系为:乙走10千米用的时间-甲走6千米用的时间
8、=h,解题时注意单位换算【详解】解:设甲的速度为,则乙的速度为根据题意,得故选:D【考点】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键6、A【解析】【分析】根据第一周之后,按原计划的生产时间提速后生产时间+1,可得结果【详解】由题知:故选:A【考点】本题考查了分式方程的实际应用问题,根据题意列出方程式即可7、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础8、A【解析】【分析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计
9、划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选【考点】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系9、D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.【详解】=1,解得:x=m3,关于x的分式方程=1的解是负数,m30,解得:m3,当x=m3=1时,方程无解,则m2,故m的取值范围是:m3且m2,故选D【考点】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键10、A【解析】【分析】根据题意先求得快马的速度和慢马的速度,根据快马的速度是慢马
10、的2倍列分式方程即可【详解】设规定时间为x天,慢马的速度为,快马的速度为,则故选A【考点】本题考查了分式方程的应用,根据题意找到等量关系是解题的关键二、填空题1、【解析】【分析】先通分,再相加即可求得结果【详解】解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可2、x=1【解析】【详解】试题解析:根据分式方程有增根,得到x-1=0,即x=1,则方程的增根为x=1故答案为x=1.3、且【解析】【分析】先解分式方程得到,再结合分式方程的解是正数以及分式有意义的条件求解即可【详解】解:去分母得:,去括号得:,移项得:,合并、系数化为1得:,关于x的分式方程的解是正数,且,故答
11、案为:且【考点】本题主要考查了根据分式方程解的情况求参数,熟知解分式方程的方法是解题的关键4、-【解析】【分析】直接利用分式的混合运算法则即可得出.【详解】原式,.故答案为.【考点】此题主要考查了分式的化简,正确掌握运算法则是解题关键.5、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.三、解答题1、 (1)(2)千米/时【解析】【分析】(1)设乙的速度为千米/时,则甲的速度为千米/时,根据甲出发半小
12、时恰好追上乙列方程求解即可;(2)设乙的速度为千米/时,则甲的速度为千米/时,根据甲、乙恰好同时到达地列方程求解即可(1)解:设乙的速度为千米/时,则甲的速度为千米/时,由题意得:,解得:,则,答:甲骑行的速度为千米/时;(2)设乙的速度为千米/时,则甲的速度为千米/时,由题意得:,解得,经检验是分式方程的解,则,答:甲骑行的速度为千米/时【考点】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键2、15千米/时【解析】【分析】根据时间来列等量关系关键描述语为:“过了20分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间-乘车同学所
13、用时间=【详解】设骑车同学的速度为x千米/时则:解得:x15检验:当x15时,6x0,x15是原方程的解答:骑车同学的速度为15千米/时【考点】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键3、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,是解题的关键4、(1);(2);(3
14、)【解析】【分析】根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:答案不唯一;故答案为;原式 ;故答案为 分式方程整理得:,即,方程两边同时乘,得,解得:,经检验,是原分式方程的解所以原方程的解为:【考点】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.5、 (1)小聪,分式的分母不能为0;(2)且;(3)或【解析】【分析】(1)根据分式有意义的条件:分母不能为0,即可知道小聪说得对;(2)首先按照解分式方程的步骤得到方程的解,再利用解是非负数即可求出的取值范围;(3)按照解分式方程的步骤去分母得到整式方程,若分式方程无解,则得到增根或者整式方程无解,即可求出的范围(1)解:分式方程的解不能是增根,即不能使分式的分母为0小聪说得对,分式的分母不能为0(2)解:原方程可化为去分母得:解得:解为非负数,即又,即且(3)解:去分母得:解得:原方程无解或者当时,得: 当时,得:综上:当或时原方程无解【考点】本题考查了解分式方程以及根据分式方程的解确定参数范围,重点要掌握解分式方程的步骤:去分母化成整式方程;再解整式方程;验根理解当分式方程无解时包含整式方程无解和有曾根两种情况