1、人教版八年级数学上册第十五章分式综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,则代数式的值是()ABCD2、对于任意的实数,总有意义的分式是()ABCD3、解分式方程3=时,去分母可得()
2、A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=44、化简(a1)(1)a的结果是()Aa2B1Ca2D15、若a0.32,b(3)2,c()2,d()0,则()AabcdBabdcCadcbDcadb6、下列等式成立的是()A(3)29B(3)2Ca14Da2b67、已知5x=3,5y=2,则52x3y=()AB1CD8、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)9、某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务,若设原计划每周生产x万
3、个口罩,则可列方程为()ABCD10、计算的结果是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式方程有增根,则m_2、若代数式有意义,则实数的取值范围是_3、方程的解为_4、若关于x的分式方程有正整数解,则整数m为 _5、化简:_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中x取不等式组的适当整数解2、将下列代数式按尽可能多的方法分类(至少写三种):3、阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(JNplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1
4、783年)才发现指数与对数之间的联系对数的定义:一般地,若ax=N(a0,a1),那么x叫做以a为底N的对数,记作:x=logaN比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:设logaM=m,logaN=n,则M=am,N=anMN=aman=am+n,由对数的定义得m+n=loga(MN)又m+n=logaM+logaNloga(MN)=logaM+logaN解决以下问题:(1)将指数43=64转化为对数式: .(2)仿照上面的材
5、料,试证明: =(a0,al,M0,N0).(3) 拓展运用:计算log32+log36-log34=_.4、先化简,(x2),然后从2x2范围内选取一个合适的整数作为x的值代入求值5、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?-参考答案-一、单选题1、D【解析】【分析】
6、利用等式的性质对变形可得,利用分式的性质对变形可得,从而代入求值即可【详解】由条件可知,即:,根据分式的性质得:,将代入上式得:原式,故选:D【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键2、B【解析】【分析】根据分式有意义的条件进行判断即可【详解】A项当x=1时,分母为0,分式无意义;B项分母x2+1恒大于0,故分式总有意义;C项当x=0时,分母为0,分式无意义;D项当x=1时,分母为0,分式无意义;故选:B【考点】本题考查了分式有意义的条件,掌握知识点是解题关键3、B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x
7、-2),得13(x2)=4,故选B【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.4、A【解析】【分析】根据分式的混合运算顺序和运算法则计算可得【详解】原式=(a1)a=(a1)a=a2,故选A【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则5、B【解析】【详解】a0.32=-0.09,b(3)2=,c=9,d=1,abdc.故选B.6、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-2
8、4a14,本选项错误;D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则7、D【解析】【详解】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x3y的值为多少即可详解:5x=3,5y=2,52x=32=9,53y=23=8,52x3y=故选D点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:底数a0,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用
9、同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么8、C【解析】【分析】最简公分母是2x1,方程两边都乘以(2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根9、A【解析】【分析】根据第一周之后,按原计划的生产时间提速后生产时间+1,可得结果【详解】由题知:故选:A【考点】本题考查了分式方程的实际应用问题,根据题意列出方程式即可10、A【解析】【详解】原式故选A.二、填空题1、1【解析
10、】【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根,得到x-2=0,即x=2,代入整式方程计算即可求出m的值【详解】去分母得:x-m=1,由分式方程有增根,得到x-2=0,即x=2,把x=2代入整式方程得:m=1;故答案为:1【考点】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值2、【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可【详解】代数式有意义,分母不能为0,可得,即,故答案为:【考点】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键3、【解析】【分析】先去分母,然后移项合并,最后进行
11、检验即可【详解】解:去分母得:移项合并得:检验,将代入,所以是原分式方程的解故答案为:【考点】本题考查了解分式方程解题的关键在于正确的去分母4、0【解析】【分析】先解分式方程,再根据有正整数解及分母不为0进行求解即可【详解】方程两边同乘,得解得分式方程有正整数解即即故答案为:0【考点】本题考查解分式方程及分式方程正整数根的情况,注意分母不等于0是解题的关键5、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案【详解】解:原式=1故答案为:1【考点】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型三、解答题1、,-3或【解析】【分析】
12、先进行分式去括号,结合完全平方式和因式分解进行分式的混合运算,得到化简后的分式再解不等式组,得出x的取值范围,且注意使原分式有意义的条件,即可得出x的具体值,将其带入化简后的分式即可【详解】原式解不等式组得其整数解为-1,0,1,2,3由题得:,x可以取0或2分当时,原式(当时,原式)【考点】本题考查分式的化简求值,和解不等式组解题时需注意使分式有意义的条件2、见详解【解析】【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【考点】本题主要考查整式,单项式,多项式的概念,熟练
13、掌握整式,单项式、多项式的定义是解题的关键3、(1)3=log464;(2)见解析;(3)1【解析】【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;(3)根据公式:loga(MN)=logaM+logaN和loga=logaM-logaN的逆用,将所求式子表示为:log3(264),计算可得结论【详解】(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为3=log464;(2)设logaM=m,logaN=n,则M=am,N=
14、an,=am-n,由对数的定义得m-n=loga,又m-n=logaM-logaN,loga=logaM-logaN(a0,a1,M0,N0);(3)log32+log36-log34,=log3(264),=log33,=1,故答案为1【考点】此题考查整式的混合运算,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.4、x+3,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】解:原式= = =(x3)=x+3x 2,可取x1,则原式1+32【考点】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
15、及分式有意义的条件5、(1)120件;(2)150元【解析】【分析】(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,这种衬衫贵10元,列出方程求解即可(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可【详解】(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件,由题意可得:,解得,经检验是原方程的根(2)设每件衬衫的标价至少是元,由(1)得第一批的进价为:(元/件),第二批的进价为:(元)由题意可得:解得:,所以,即每件衬衫的标价至少是150元【考点】本题考查分式方程的应用,一元一次不等式的应用,正确找出等量关系和不等关系是解题关键