收藏 分享(赏)

基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx

上传人:a**** 文档编号:958600 上传时间:2025-12-19 格式:DOCX 页数:23 大小:470.26KB
下载 相关 举报
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第1页
第1页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第2页
第2页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第3页
第3页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第4页
第4页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第5页
第5页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第6页
第6页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第7页
第7页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第8页
第8页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第9页
第9页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第10页
第10页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第11页
第11页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第12页
第12页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第13页
第13页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第14页
第14页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第15页
第15页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第16页
第16页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第17页
第17页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第18页
第18页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第19页
第19页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第20页
第20页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第21页
第21页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第22页
第22页 / 共23页
基础强化人教版八年级数学上册第十三章轴对称章节测试试题(含答案解析版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版八年级数学上册第十三章轴对称章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,ACB90,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直

2、线MN交AB于点D,交BC于点E若AC3,AB5,则DE等于()A2BCD2、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A750米B1000米C1500米D2000米3、等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A或或B或C或D或4、如图所示,线段AC的垂直平分线交线段AB于点D,A50,则BDC()A50B100C120D1305、已知点与点关于轴对称,则点的坐标为()ABCD6、如图,已知是的角平分线,是的垂直平分线,则的长为()A6

3、B5C4D7、下列图案是几家银行的标志,其中是轴对称图形的有()A1个B2个C3个D4个8、将三角形纸片()按如图所示的方式折叠,使点C落在边上的点D,折痕为已知,若以点B、D、F为顶点的三角形与相似,那么的长度是()A2B或2CD或29、下列图形中,是轴对称图形的是()ABCD10、如图,ABC与ABC关于直线MN对称,P为MN上任一点(A、P、A不共线),下列结论中错误的是()AAAP是等腰三角形BMN垂直平分AA、CCCABC与ABC面积相等D直线AB,AB的交点不一定在直线MN上第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图将长方形折叠,折痕为,的对应边与

4、交于点,若,则的度数为_2、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC的垂直平分线交AB 于点E,交AC于点D若y轴上有一点P(不与点C重合),能使AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为_3、如图,分别以的边,所在直线为称轴作的对称图形和,线段与相交于点O,连接、有如下结论:;平分:;其中正确的结论个数为_4、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm25、如图,等边ABC的边长为6,点D是AB上一

5、动点,过点D作DEAC交BC于E,将BDE沿着DE翻折得到,连接,则的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM2、如图,在中,边的垂直平分线分别交,于点.(1)求证:为的中点;(2)若,求的长.3、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E求证:AED是等腰三角形4、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求的周长5、已知:

6、在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍-参考答案-一、单选题1、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC=4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在RtACE中,由勾股

7、定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在RtADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.2、B【解析】【详解】解:作A的对称点,连接B交CD于P,AP+PB=,此时值最小,在中,,,点A到河岸CD的中点的距离为500米,B=AP+PB=1000米3、A【解析】【分析】设另一个角是x,表示出一个角是2x-20,然后分x是顶角,2x-20是底角,x是底角,2x-20是顶角,x与2x-20都是底角根据三角形的内角和等于180与等腰三角形两底角

8、相等列出方程求解即可【详解】设另一个角是x,表示出一个角是2x20,x是顶角,2x20是底角时,x+2(2x20)180,解得x44,所以,顶角是44;x是底角,2x20是顶角时,2x+(2x20)180,解得x50,所以,顶角是2502080;x与2x20都是底角时,x2x20,解得x20,所以,顶角是180202140;综上所述,这个等腰三角形的顶角度数是44或80或140故选:A【考点】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错4、B【解析】【分析】根据线段垂直平分线的性质得到DADC,根据等腰三角形的性质

9、得到DCAA,根据三角形的外角的性质计算即可【详解】解:DE是线段AC的垂直平分线,DADC,DCAA50,BDCDCA+A100,故选:B【考点】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键5、B【解析】【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【考点】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.6、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2

10、AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.7、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C【

11、考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键8、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】沿折叠后点C和点D重合,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:若,则,即,解得;若,则,即,解得综上,的长为或2,故选:B【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键9、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对

12、称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴10、D【解析】【分析】据对称轴的定义,ABC与ABC关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系【详解】解:ABC与ABC关于直线MN对称,P为MN上任意一点,AAP是等腰三角形,MN垂直平分AA,CC,这两个三角形的面积相等,故A、B、C选项正确,直线AB,AB关于直线MN对称,因此交点一定在MN上,故D错误

13、,故选:D【考点】本题主要考查了轴对称性质的理解和应用,准确分析判断是解题的关键二、填空题1、70【解析】【分析】依据矩形的性质以及折叠的性质,即可得到DFE=BEF,设BEF=,则DFE=BEF=,根据BECF,即可得出BEF+CFE=180,进而得到BEF的度数【详解】解:四边形ABCD是矩形,ABDC,BEF=DFE,由折叠可得,BEF=BEF,设BEF=,则DFE=BEF=,BECF,BEF+CFE=180,即+40=180,解得=70,BEF=70,故答案为:70【考点】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对

14、应边和对应角相等2、,或【解析】【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案【详解】对角线 AC的垂直平分线交AB 于点E,AE=CE,OA=1,OC=2,AB=OC=2,BC=OA=1,设AE=m,则BE=2-m,CE=m,在RtBCE中,BE2+ BC2=CE2,即:(2-m)2+12=m2,解得:m=,E(1,),设点P坐标为(0,y),AEP是以为 AE 为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2= (1-1)2+(0-)2,解得:y=,当EP=AE,则(1-0)2+(-y)2= (1-1)2

15、+(0-)2,解得:y=,点 P的坐标为,故答案是:,【考点】本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键3、3【解析】【分析】根据轴对称的性质以及全等三角形的性质一一判断即可【详解】解:和是的轴对称图形,故正确;,由翻折的性质得,又,故正确;,边上的高与边上的高相等,即点到两边的距离相等,平分,故正确;只有当时,才有,故错误;在和中,故错误;综上所述,结论正确的是故答案为:3【考点】本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、1【解析】【分析】根据等腰三角形三线合一的性质

16、即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键5、3【解析】【分析】先找出B点变化的规律,可发现B在ABC的角平分线上运动,故AB取最小值时,B点在AC中点上【详解】如图,DEAC,ABC是等边三角形,BDE是等边三角形,折叠后的BDE也是等边三角形,过B作DE的垂直平分线,BDBE,BDBE,BB都在DE 的垂直平分线上,AB最小,即A到DE的垂直平分线的距离最小,此时ABBB,AB=A

17、C=1263,即AB的最小值是3故答案为:3【考点】本题主要考查等边三角形和垂直平分线的性质,掌握和理解等边三角形性质是本题关键三、解答题1、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】,AF是的平分线,E是AC的中点,在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键2、(1)详见解析;(2).【解析】【分析】(1)连接CE,根据垂直平分线的性质得到EC=EA,再根据等腰三角形的性质得到EC=EB

18、,进而即可得解;(2)根据含有30角的直角三角形的性质即可得解.【详解】(1)如下图,连接EC,DE是AC的垂直平分线EA=ECEC=EBEB=EA为的中点;(2)DE是AC的垂直平分线,BE=AE.【考点】本题主要考查了垂直平分线的性质及等腰三角形的性质,以及含有30角的直角三角形的性质,熟练掌握相关三角形的性质是解决本题的关键.3、见解析【解析】【分析】根据等腰三角形的性质得到BAD=CAD,根据平行线的性质得到ADE=BAD,等量代换得到ADE=CAD于是得到结论【详解】解:ABC是等腰三角形,AB=AC,AD是底边BC上的中线,BAD=CAD,DEAB,ADE=BAD,ADE=CAD,

19、AE=ED,AED是等腰三角形【考点】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键4、7cm【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可【详解】解:BC沿BD折叠点C落在AB边上的点E处,DE=CD,BE=BC,AB=8cm,BC=6cm,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm【考点】本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键5、(1)证明见解析;

20、(2)ACD、ABE、BCE、BHG【解析】【详解】分析:(1)由ACBD、BFCD知ADE+DAE=CGF+GCF,根据BGE=ADE=CGF得出DAE=GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知SADC=2a2=2SADE,证ADEBGE得BE=AE=2a,再分别求出SABE、SACE、SBHG,从而得出答案详解:(1)BGE=ADE,BGE=CGF,ADE=CGF,ACBD、BFCD,ADE+DAE=CGF+GCF,DAE=GCF,AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,SADE=AEDE=2aa=a2,BH是ABE的中线,AH=HE=a,AD=CD、ACBD,CE=AE=2a,则SADC=ACDE=(2a+2a)a=2a2=2SADE;在ADE和BGE中,ADEBGE(ASA),BE=AE=2a,SABE=AEBE=(2a)2a=2a2,SACE=CEBE=(2a)2a=2a2,SBHG=HGBE=(a+a)2a=2a2,综上,面积等于ADE面积的2倍的三角形有ACD、ABE、BCE、BHG点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1