1、人教版八年级数学上册第十三章轴对称专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是轴对称图形的是()ABCD2、如图,已知AB=AC=BD,那么1与2之间的关系是( )A1=22B2
2、1+2=180C1+32=180D31-2=1803、在平面直角坐标系中,点关于轴对称的点的坐标为()ABCD4、对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是()A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”5、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHP
3、D;连接CP,CP平分ACB,其中正确的是()ABCD6、如图,在中,则的长为()ABCD7、如果点与关于轴对称,则,的值分别为()A,B,C,D,8、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的交点C三条中线的交点D三条边垂直平分线的交点9、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()ABCD10、如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A2条B4条C6条D8条第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平分,的延长线交于点,若,则的度
4、数为_2、已知ABC是等腰三角形若A=40,则ABC的顶角度数是_3、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把BDE沿直线DE翻折,使点B落在B处,DB,EB分别交AC于点F,G.若ADF80,则DEG的度数为_4、正五边形ABCDE中,对角线AC、BD相较于点P,则APB的度数为_5、若点与点关于轴对称,则值是_三、解答题(5小题,每小题10分,共计50分)1、如图,AD是ABC的中线,点E在AD上,且BEAC,求证:BEDCAD2、如图,在边长为1个单位长度的小正方形组成的1212网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称
5、轴为直线AC(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形ABCD.3、如图所示的四个图形中,从几何图形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由4、如图,在ABC中,B=75,ADBC,C=CAD,求C,BAC的度数5、在直角坐标平面内,已知点A的坐标(1,4),点B的位置如图所示,点C是第一象限内一点,且点C到x轴的距离是2,到y轴的距离是4(1)写出图中点B的坐标;(2)在图中描出点C,并写出图中点C的坐标:;(3)画出ABO关于y轴的对称图形ABO;(4)联结AB、BB、BC、AC那么四边形
6、ABBC的面积等于-参考答案-一、单选题1、C【解析】【分析】依据轴对称图形的定义逐项分析即可得出C选项正确【详解】解:因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图形,故选:C【考点】本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力2、D【解析】
7、【分析】根据等腰三角形的性质和三角形的内角和定理可得B=18021=C,根据三角形的外角性质可得C=12,进一步即得答案【详解】解:AB=AC=BD,BAD=1,B=C,B=18021=C,C=12,18021=12,312=180故选:D【考点】本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质等知识,属于基本题型,熟练掌握上述知识是解题的关键3、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的
8、关键4、B【解析】【分析】由垂直平分线的判定定理,即可得到答案【详解】解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断5、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=
9、45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三
10、角形内角和定理掌握相关性质是解题的关键6、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长7、A【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变即点P(x,y)关于y轴的对
11、称点P的坐标是(-x,y),进而得出答案【详解】解:点P(-m,3)与点Q(-5,n)关于y轴对称,m=-5,n=3,故选:A【考点】此题主要考查了关于y轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键8、D【解析】【分析】根据线段垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的距离相等是解答的关键9、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,都不符合题意;D是轴对称图形,符合题意,故选
12、D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键10、B【解析】【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数【详解】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条故选:B【考点】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质二、填空题1、【解析】【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 是的垂直平分线, 故答案为: 【考点】本题考查的是等
13、腰三角形的性质,掌握等腰三角形的三线合一是解题的关键2、40或100【解析】【分析】分A为三角形顶角或底角两种情况讨论,即可求解【详解】解:当A为三角形顶角时,则ABC的顶角度数是40;当A为三角形底角时,则ABC的顶角度数是180-40-40=100;故答案为:40或100【考点】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论3、70【解析】【详解】解:由折叠的性质得到BDE=BDE,ADF=80,ADF+BDE+BDE=180,BDE=BDE=50,ABC为等边三角形,B=60,则BED=180-(50+60)=70DEG=BED =70,故答案为:704、72#72度【解析】
14、【分析】根据正五边形的性质,可得,AB=BC=CD,从而得到ACB=CBD=36,再由三角形外角的性质,即可求解【详解】解:多边形ABCDE是正五边形,AB=BC=CD,ACB=CBD=36,APB=ACB+CBD=72故答案为:72【考点】本题主要考查了正多边形的性质,等腰三角形的性质,三角形外角的性质,熟练掌握正多边形的性质,等腰三角形的性质,三角形外角的性质是解题的关键5、1【解析】【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,解得:m=2,n=-1则(m+n)2021=(2-1)
15、2021=1故答案为:1【考点】此题主要考查了关于y轴对称点的性质,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数三、解答题1、见解析【解析】【分析】延长AD到E,使FDAD,连接BF,易证ADCFDB,得到BFAC,FCAD,而BEAC,所以BFBE,得BEDF,等量代换即可【详解】证明:延长AD到E,使FDAD,连接BF在ADC和FDB中, (SAS)BFAC,FCADBEAC,BFBEBEDF,BEDCAD【考点】本题考查了全等三角形的判定与性质,等腰三角形的性质,倍长中线构造全等三角形是解题的关键2、(1)详见解析;(2)详见解析.【解析】【分析】(1)画出点B关于直线
16、AC的对称点D即可解决问题(2)将四边形ABCD各个点向下平移5个单位即可得到四边形ABCD【详解】(1)点D及四边形ABCD的另两条边如图所示(2)得到的四边形ABCD如图所示【考点】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移3、图(2),仅它不是轴对称图形【解析】【详解】试题分析:观察图形发现(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形,由此即可得出结论试题解析:解:(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形故从几何图形变换的角度考虑,图(2)与其它三个不同4、C=45;BAC=60【解析】【分析】在RtACD中,利用两
17、锐角互余以及等腰三角形的性质求得C=45,在ABC中,利用三角形内角和定理即可求得BAC=60【详解】解:ADBC,ADC=90,在RtACD中,CAD+C=90,C=CAD,C=CAD=45,在ABC中,B=75,BAC=180BC=1807545=60【考点】本题考查了等腰三角形的性质,三角形内角和定理,熟记各图形的性质并准确识图是解题的关键5、(1)(4,2),(2)描点见解析,(4,2)(3)画图见解析,(4)30【解析】【分析】(1)根据B的位置写出坐标即可;(2)描出点C,根据C的位置写出坐标即可;(3)作出A、B关于y轴的对称点A、B即可;(4)根据S四边形ABBCSABB+SCAB计算即可;【详解】解:(1)观察可知点B的坐标为:B(4,2);故答案为(4,2),(2)点C的位置如图所示,坐标为C(4,2),故答案为(4,2) (3)ABO如图所示,(4)S四边形ABBCSABB+SCAB43+ 8630故答案为30【考点】本题考查作图轴对称变换,四边形的面积等知识,解题的关键是熟练掌握轴对称的坐标变化规律,会用分割法求四边形面积