收藏 分享(赏)

基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx

上传人:a**** 文档编号:958481 上传时间:2025-12-19 格式:DOCX 页数:25 大小:568.68KB
下载 相关 举报
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第1页
第1页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第2页
第2页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第3页
第3页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第4页
第4页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第5页
第5页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第6页
第6页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第7页
第7页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第8页
第8页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第9页
第9页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第10页
第10页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第11页
第11页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第12页
第12页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第13页
第13页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第14页
第14页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第15页
第15页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第16页
第16页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第17页
第17页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第18页
第18页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第19页
第19页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第20页
第20页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第21页
第21页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第22页
第22页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第23页
第23页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第24页
第24页 / 共25页
基础强化人教版九年级数学上册第二十四章圆难点解析试题(详解).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D112、如图,点A,B的坐标分别为,点C为坐标平面内一点

2、,点M为线段的中点,连接,则的最大值为( )ABCD3、已知扇形的半径为6,圆心角为则它的面积是()ABCD4、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26寸5、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()ABCD6、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D27、如图,、为的切线,、为切点,点为弧上

3、一点,过点作的切线分别交、于、,若,则的周长等于()ABCD8、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD9、如图,五边形是O的内接正五边形,则的度数为()ABCD10、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角

4、坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_2、如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC2,则图中阴影部分的面积为_(结果保留)3、如图,四边形ABCD为O的内接正四边形,AEF为O的内接正三角形,连接DF若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为 _4、若一个扇形的弧长是,面积是,则扇形的圆心角是_度5、如图,在中,ABC=90,A=58,AC=18,点D为边AC的中点以点B为圆

5、心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为_a三、解答题(5小题,每小题10分,共计50分)1、如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(1)求证:DEDB;(2)若BAC90,BD4,求ABC外接圆的半径2、如图,在ABC中,以AB为直径的O交AC于点M,弦交AB于点E,且ME3,AE4,AM5(1)求证:BC是O的切线;(2)求O的直径AB的长度3、如图所示,AB是O的直径,点C为O上一点,过点B作BDCD,垂足为点D,连结BCBC平分ABD求证:CD为O的切线4、如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.

6、5、如图,AD、BC是O的两条弦,且ABCD,求证:ADBC-参考答案-一、单选题1、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键2、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与

7、MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大3、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键4、D【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解

8、【详解】解:连结AO, CD为直径,CDAB, 设O半径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键5、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,AB、BC与O相切于点A、C,OAAB,OCBC,又ABBC,OA=OC,四边形OABC是正方形,OA=AB=BC=OC=0.8m,故选:C【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质6、B【解析】【

9、分析】过D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC在RtADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:

10、2【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键7、B【解析】【分析】由切线长定理可得,然后根据线段之间的转化即可求得的周长【详解】、为的切线,所以,又为的切线,的周长故选:B【考点】此题考查了圆中切线长定理的运用,解题的关键是熟练掌握切线长定理8、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,

11、AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点9、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键10、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质

12、判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键二、填空题1、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用过点M作MFCD于F,过C作CEOA于E,在RtCMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C

13、的坐标【详解】四边形OCDB是平行四边形,点B的坐标为(16,0),CDOA,CD=OB=16,过点M作MFCD于F,则 过C作CEOA于E,A(20,0),OA=20,OM=10,OE=OMME=OMCF=108=2,连接MC, 在RtCMF中, 点C的坐标为(2,6).故答案为(2,6).【考点】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键2、【解析】【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,BAO和EDO的度数,从而可以解答本题【详解】解:四边形ABCD是矩形,OAOCOB

14、OD,ABAO,ABO是等边三角形,BAO60,EDO30,AC2,OAOD1,图中阴影部分的面积为:,故答案为:【考点】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键3、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算O的内接正四边形与内接正三角形的中心角得到AOD=90,AOF=120,则DOF=30,然后计算即可得到n的值【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,AD,AF分别为O的内接正四边形与内接正三角形的一边,AOD=90,AOF=120,DOF=AOF-AO

15、D=30,n=12,即DF恰好是同圆内接一个正十二边形的一边故答案为:12【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念4、60【解析】【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可【详解】解:扇形的面积=6,解得:r=6,又=2,n=60故答案为:60【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法5、【解析】【分析】先根据直角三角形斜边上的中线性质得到BD=CD=9,则DBC=C=22,然后根据扇形的面积公式计算【详解】

16、解:ABC=90,点D为边AC的中点,BD=CD=AC=9,DBC=C,C=90-A=90-58=32,DBE=32,图中阴影部分图形的面积= 故答案为:【考点】本题考查了扇形面积的计算:设圆心角是n,圆的半径为R的扇形面积为S,则S扇形= 或S扇形=lR(其中l为扇形的弧长)也考查了直角三角形斜边上的中线性质三、解答题1、 (1)证明见解析(2)2 【解析】【详解】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出 由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径试题解析:(1)证明:平分 又 平分 连接, 是直径 平分 半径为 2、(

17、1)见解析(2)【解析】【分析】(1)根据勾股定理的逆定理得到AEM90,由于,根据平行线的性质得ABC90,然后根据切线的判定定理即可得到BC是O的切线;(2)连接OM,设O的半径是r,在RtOEM中,根据勾股定理得到r232(4r)2,解方程即可得到O的半径,即可得出答案【详解】(1)证明:在AME中,ME3,AE4,AM5,AM2ME2AE2,AME是直角三角形,AEM90,又,ABCAEM90,ABBC,AB为直径,BC是O的切线;(2)解:连接OM,如图,设O的半径是r,在RtOEM中,OEAEOA4r,ME3,OMr,OM2ME2OE2,r232(4r)2,解得:r,AB2r【考点

18、】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线也考查了勾股定理和勾股定理的逆定理3、证明见解析.【解析】【详解】【分析】先利用BC平分ABD得到OBC=DBC,再证明OCBD,从而得到OCCD,然后根据切线的判定定理得到结论【详解】BC平分ABD,OBC=DBC,OB=OC,OBC=OCB,OCB=DBC,OCBD,BDCD,OCCD,CD为O的切线【考点】本题考查了切线的判定定理,熟知经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键4、(1)证明见解析;(2)证明见解析.【解析】【详解】分析:(1)先证点、共圆,从而得到,又,即可得出结论;(2) 连接,证得到又由于,,结合可得BO=BC, 从而四边形是菱形.详解:(1).点、在以点为圆心,为半径的圆上.又,.(2)证明:如图,连接.,.,.,.又.,.又,四边形是菱形.点睛:本题考查圆周角定理、全等三角形的判定和性质、菱形的判定等知识,解题的关键是灵活应用圆周角定理,学会添加常用辅助线,属于中考常考题型5、证明见解析【解析】【分析】根据AB=CD,得出,进而得出,即可解答【详解】证明:AB,CD是O的两条弦,且AB=CD,,,AD=BC【考点】此题考查圆心角、弧、弦的关系,关键是利用三者的关系解答

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1